GADY: Unsupervised Anomaly Detection on Dynamic Graphs
- URL: http://arxiv.org/abs/2310.16376v1
- Date: Wed, 25 Oct 2023 05:27:45 GMT
- Title: GADY: Unsupervised Anomaly Detection on Dynamic Graphs
- Authors: Shiqi Lou, Qingyue Zhang, Shujie Yang, Yuyang Tian, Zhaoxuan Tan,
Minnan Luo
- Abstract summary: We propose a continuous dynamic graph model to capture the fine-grained information, which breaks the limit of existing discrete methods.
For the second challenge, we pioneer the use of Generative Adversarial Networks to generate negative interactions.
Our proposed GADY significantly outperforms the previous state-of-the-art method on three real-world datasets.
- Score: 18.1896489628884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection on dynamic graphs refers to detecting entities whose
behaviors obviously deviate from the norms observed within graphs and their
temporal information. This field has drawn increasing attention due to its
application in finance, network security, social networks, and more. However,
existing methods face two challenges: dynamic structure constructing challenge
- difficulties in capturing graph structure with complex time information and
negative sampling challenge - unable to construct excellent negative samples
for unsupervised learning. To address these challenges, we propose Unsupervised
Generative Anomaly Detection on Dynamic Graphs (GADY). To tackle the first
challenge, we propose a continuous dynamic graph model to capture the
fine-grained information, which breaks the limit of existing discrete methods.
Specifically, we employ a message-passing framework combined with positional
features to get edge embeddings, which are decoded to identify anomalies. For
the second challenge, we pioneer the use of Generative Adversarial Networks to
generate negative interactions. Moreover, we design a loss function to alter
the training goal of the generator while ensuring the diversity and quality of
generated samples. Extensive experiments demonstrate that our proposed GADY
significantly outperforms the previous state-of-the-art method on three
real-world datasets. Supplementary experiments further validate the
effectiveness of our model design and the necessity of each module.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Detecting Complex Multi-step Attacks with Explainable Graph Neural Network [22.36690129820124]
Complex multi-step attacks have caused significant damage to numerous critical infrastructures.
To detect such attacks, graph neural network based methods have shown promising results.
However, existing methods still face several challenges when deployed in practice.
arXiv Detail & Related papers (2024-05-18T16:47:21Z) - Develop End-to-End Anomaly Detection System [3.130722489512822]
Anomaly detection plays a crucial role in ensuring network robustness.
We propose an end-to-end anomaly detection model development pipeline.
We demonstrate the efficacy of the framework by way of introducing and bench-marking a new forecasting model.
arXiv Detail & Related papers (2024-02-01T09:02:44Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority.
We propose a novel few-shot Graph Anomaly Detection model called FMGAD.
We show that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
arXiv Detail & Related papers (2023-11-17T07:49:20Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - DAGAD: Data Augmentation for Graph Anomaly Detection [57.92471847260541]
This paper devises a novel Data Augmentation-based Graph Anomaly Detection (DAGAD) framework for attributed graphs.
A series of experiments on three datasets prove that DAGAD outperforms ten state-of-the-art baseline detectors concerning various mostly-used metrics.
arXiv Detail & Related papers (2022-10-18T11:28:21Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
We present a novel Transformer-based Anomaly Detection framework for DYnamic graph (TADDY)
Our framework constructs a comprehensive node encoding strategy to better represent each node's structural and temporal roles in an evolving graphs stream.
Our proposed TADDY framework outperforms the state-of-the-art methods by a large margin on four real-world datasets.
arXiv Detail & Related papers (2021-06-18T02:27:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.