論文の概要: ParisLuco3D: A high-quality target dataset for domain generalization of LiDAR perception
- arxiv url: http://arxiv.org/abs/2310.16542v3
- Date: Mon, 3 Jun 2024 18:08:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 14:07:02.718349
- Title: ParisLuco3D: A high-quality target dataset for domain generalization of LiDAR perception
- Title(参考訳): ParisLuco3D:LiDAR知覚の領域一般化のための高品質なターゲットデータセット
- Authors: Jules Sanchez, Louis Soum-Fontez, Jean-Emmanuel Deschaud, Francois Goulette,
- Abstract要約: 本稿では,クロスドメイン評価に特化して設計された新しいデータセットParisLuco3Dを提案する。
LiDARセマンティックセグメンテーション、LiDARオブジェクト検出、LiDARトラッキングのためのオンラインベンチマークが提供されている。
- 参考スコア(独自算出の注目度): 4.268591926288843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LiDAR is an essential sensor for autonomous driving by collecting precise geometric information regarding a scene. %Exploiting this information for perception is interesting as the amount of available data increases. As the performance of various LiDAR perception tasks has improved, generalizations to new environments and sensors has emerged to test these optimized models in real-world conditions. This paper provides a novel dataset, ParisLuco3D, specifically designed for cross-domain evaluation to make it easier to evaluate the performance utilizing various source datasets. Alongside the dataset, online benchmarks for LiDAR semantic segmentation, LiDAR object detection, and LiDAR tracking are provided to ensure a fair comparison across methods. The ParisLuco3D dataset, evaluation scripts, and links to benchmarks can be found at the following website:https://npm3d.fr/parisluco3d
- Abstract(参考訳): LiDARは、シーンに関する正確な幾何学的情報を収集することによって、自律運転に不可欠なセンサーである。
% 利用可能なデータの量が増えるにつれて,この情報を認識するために公開することが興味深い。
様々なLiDAR認識タスクの性能が向上するにつれて、これらの最適化されたモデルを実環境下でテストするために、新しい環境やセンサーへの一般化が出現している。
本稿では,クロスドメイン評価のための新しいデータセットParisLuco3Dを提案する。
データセットに加えて、LiDARセマンティックセグメンテーション、LiDARオブジェクト検出、LiDARトラッキングのためのオンラインベンチマークも提供され、メソッド間の公正な比較が保証される。
ParisLuco3Dデータセット、評価スクリプト、ベンチマークへのリンクは以下のウェブサイトで見ることができる。
関連論文リスト
- TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis [9.458657306918859]
効率的な交通信号検出は、自動運転車における知覚スタックの重要な構成要素である。
本研究は,先行研究の課題に対処しつつ,新たなディープラーニング検出システムを導入する。
本稿では,道路上の矢印マークを革新的に利用し,事前地図作成の必要性を解消する関連性推定システムを提案する。
論文 参考訳(メタデータ) (2024-09-11T14:12:44Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
我々は、異なるLiDARスキャンからレーザービーム操作を統合するフレームワークであるLaserMix++を導入し、データ効率の学習を支援するためにLiDAR-カメラ対応を組み込んだ。
結果は、LaserMix++が完全に教師付き代替よりも優れており、5倍のアノテーションで同等の精度を実現していることを示している。
この大幅な進歩は、LiDARベースの3Dシーン理解システムにおける広範囲なラベル付きデータへの依存を減らすための半教師付きアプローチの可能性を示している。
論文 参考訳(メタデータ) (2024-05-08T17:59:53Z) - Is Your LiDAR Placement Optimized for 3D Scene Understanding? [8.233185931617122]
一般的な運転データセットは、主に単一LiDARシステムを使用し、悪条件を伴わないデータを収集する。
そこで我々は,LiDAR配置最適化,データ生成,下流評価を含む全サイクルパイプラインであるPlace3Dを提案する。
各種気象・センサ故障条件下でのLiDARセマンティックセマンティックセグメンテーションと3次元物体検出タスクにおいて, 例外的な結果を示す。
論文 参考訳(メタデータ) (2024-03-25T17:59:58Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Instant Domain Augmentation for LiDAR Semantic Segmentation [10.250046817380458]
本稿では「LiDomAug」と呼ばれるセマンティックセグメンテーションタスクのための高速で柔軟なLiDAR拡張手法を提案する。
当社のオンデマンド拡張モジュールは330 FPSで動作するので、学習フレームワークのデータローダにシームレスに統合することができます。
論文 参考訳(メタデータ) (2023-03-25T06:59:12Z) - MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based
Self-Supervised Pre-Training [58.07391711548269]
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training
論文 参考訳(メタデータ) (2023-03-23T17:59:02Z) - LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D
Object Detection [36.77084564823707]
ディープラーニングの手法は注釈付きデータに大きく依存しており、ドメインの一般化の問題に直面することが多い。
LiDAR-CSデータセットは、リアルタイムトラフィックにおける3Dオブジェクト検出の領域におけるセンサ関連ギャップに対処する最初のデータセットである。
論文 参考訳(メタデータ) (2023-01-29T19:10:35Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
本稿では,LiDAR 画像検出器に追従する特徴や応答をシミュレートすることで,単一モダリティ (LiDAR) 3次元物体検出器を高速化する新しい手法を提案する。
このアプローチでは、単一モダリティ検出器をトレーニングする場合のみ、LiDARイメージデータを必要とし、十分にトレーニングされた場合には、推論時にのみLiDARデータが必要である。
nuScenesデータセットの実験結果から,本手法はSOTA LiDARのみの3D検出器よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-06-30T01:44:30Z) - Learning Moving-Object Tracking with FMCW LiDAR [53.05551269151209]
新たに開発したLiDARセンサである周波数変調連続波(FMCW)を用いた学習型移動物体追跡手法を提案する。
ラベルが与えられた場合,同じインスタンスから機能を埋め込みスペースにまとめて,異なるインスタンスから機能を分離してトラッキング品質を向上させる,対照的な学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-02T09:11:36Z) - Improving Perception via Sensor Placement: Designing Multi-LiDAR Systems
for Autonomous Vehicles [16.45799795374353]
確率的占有グリッド(POG)に基づく計算が容易な情報理論的サーロゲートコストメトリックを提案し、最大センシングのためのLiDAR配置を最適化する。
以上の結果から,センサ配置は3Dポイントクラウドによる物体検出において重要な要素であり,最先端の認識アルゴリズムでは10%の精度で性能が変動する可能性が示唆された。
論文 参考訳(メタデータ) (2021-05-02T01:52:18Z) - Characterization of Multiple 3D LiDARs for Localization and Mapping
using Normal Distributions Transform [54.46473014276162]
マッピングや車両のローカライゼーションのタスクにおいて,多種多様なメーカー,モデル,レーザー構成を含む10種類の3次元LiDARセンサの詳細な比較を行った。
この研究で使用されるデータは、我々のLiDAR Benchmarking and Reference(LIBRE)データセットのサブセットであり、各センサーから独立して、各日の異なる時間に、公道で何度も運転される車両から取得される。
我々は,(1)平均地図エントロピーに基づく評価マップの品質を含む3次元地図作成作業における各LiDARの性能と特性を解析し,(2)地上の真理参照マップを用いて6-DOFのローカライゼーションを行う。
論文 参考訳(メタデータ) (2020-04-03T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。