論文の概要: WSDMS: Debunk Fake News via Weakly Supervised Detection of Misinforming
Sentences with Contextualized Social Wisdom
- arxiv url: http://arxiv.org/abs/2310.16579v1
- Date: Wed, 25 Oct 2023 12:06:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 15:03:46.103337
- Title: WSDMS: Debunk Fake News via Weakly Supervised Detection of Misinforming
Sentences with Contextualized Social Wisdom
- Title(参考訳): wsdms: コンテキスト化された社会的知恵による誤った文の検出を弱監督することで、偽ニュースを非難する
- Authors: Ruichao Yang, Wei Gao, Jing Ma, Hongzhan Lin, Zhiwei Yang
- Abstract要約: 本稿では,文章レベルの誤報を検出する偽ニュース拡散の分野における新たな課題について検討する。
Weakly Supervised Detection of Misinforming Sentences (WSDMS) というモデルを提案する。
実世界の3つのベンチマークでWSDMSを評価し、文レベルと記事レベルの両方でフェイクニュースをデバッキングすることで、既存の最先端のベースラインを上回っていることを実証した。
- 参考スコア(独自算出の注目度): 13.92421433941043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, we witness the explosion of false and unconfirmed
information (i.e., rumors) that went viral on social media and shocked the
public. Rumors can trigger versatile, mostly controversial stance expressions
among social media users. Rumor verification and stance detection are different
yet relevant tasks. Fake news debunking primarily focuses on determining the
truthfulness of news articles, which oversimplifies the issue as fake news
often combines elements of both truth and falsehood. Thus, it becomes crucial
to identify specific instances of misinformation within the articles. In this
research, we investigate a novel task in the field of fake news debunking,
which involves detecting sentence-level misinformation. One of the major
challenges in this task is the absence of a training dataset with
sentence-level annotations regarding veracity. Inspired by the Multiple
Instance Learning (MIL) approach, we propose a model called Weakly Supervised
Detection of Misinforming Sentences (WSDMS). This model only requires bag-level
labels for training but is capable of inferring both sentence-level
misinformation and article-level veracity, aided by relevant social media
conversations that are attentively contextualized with news sentences. We
evaluate WSDMS on three real-world benchmarks and demonstrate that it
outperforms existing state-of-the-art baselines in debunking fake news at both
the sentence and article levels.
- Abstract(参考訳): 近年では、ソーシャルメディア上でバイラルに広まり、大衆に衝撃を与えた偽情報や未確認情報(うわさ)の爆発を目撃している。
噂は、ソーシャルメディアユーザーの間で多目的で議論を呼んでいるスタンス表現を引き起こす可能性がある。
噂の検証と姿勢検出は、異なるが関連するタスクである。
フェイクニュースは、主にニュース記事の真実性を決定することに焦点を当て、フェイクニュースは真実と虚偽の両方の要素を組み合わせることが多いため、問題を単純化する。
したがって、記事中の特定の誤情報のインスタンスを特定することが重要となる。
本研究では,文章レベルの誤報を検出する偽ニュース拡散の分野における新たな課題について検討する。
このタスクの大きな課題の1つは、正確性に関する文レベルのアノテーションを備えたトレーニングデータセットがないことである。
本稿では,mil(multiple instance learning)アプローチに触発されて,wsdms(weakly supervised detection of misinforming sentences)と呼ばれるモデルを提案する。
このモデルは、トレーニングのためにバッグレベルのラベルのみを必要とするが、文レベルの誤情報と記事レベルの検証の両方を推論できる。
実世界の3つのベンチマークでWSDMSを評価し、文レベルと記事レベルの両方でフェイクニュースをデバッキングすることで、既存の最先端のベースラインを上回っていることを示す。
関連論文リスト
- Measuring Falseness in News Articles based on Concealment and Overstatement [5.383724566787227]
本研究では,特定のジャーナリスト記事における誤報の程度について検討する。
2つの指標(認識と過剰表現)を用いて誤情報を測定することを目的としている。
論文 参考訳(メタデータ) (2024-07-31T20:45:56Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
我々は、44名のレイト参加者に、ニュース記事を含む投稿を含むソーシャルメディアフィードをさりげなく読み取らせるという、視線追跡研究を提示した。
第2回では,参加者に対して,これらの記事の真偽を判断するよう求めた。
また、同様のシナリオを用いたフォローアップ定性的な研究についても述べるが、今回は7人の専門家によるフェイクニュースアノテータを用いた。
論文 参考訳(メタデータ) (2021-09-26T08:11:17Z) - Explainable Tsetlin Machine framework for fake news detection with
credibility score assessment [16.457778420360537]
本稿では,最近導入されたTsetlin Machine (TM) に基づく,新たな解釈可能な偽ニュース検出フレームワークを提案する。
我々は、TMの接続節を用いて、真偽のニューステキストの語彙的および意味的特性をキャプチャする。
評価のために、PolitiFactとGossipCopという2つの公開データセットで実験を行い、TMフレームワークが以前公開されたベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-05-19T13:18:02Z) - Supporting verification of news articles with automated search for
semantically similar articles [0.0]
偽ニュースを扱うための証拠検索手法を提案する。
学習課題は教師なし機械学習問題として定式化される。
われわれのアプローチは、コンセプトドリフトとは無関係である。
機械学習タスクはテキスト内の仮説とは独立している。
論文 参考訳(メタデータ) (2021-03-29T12:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。