Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control
- URL: http://arxiv.org/abs/2408.17380v1
- Date: Fri, 30 Aug 2024 16:16:57 GMT
- Title: Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control
- Authors: Zihao Sheng, Zilin Huang, Sikai Chen,
- Abstract summary: This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
- Score: 1.5361702135159845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based reinforcement learning (RL) is anticipated to exhibit higher sample efficiency compared to model-free RL by utilizing a virtual environment model. However, it is challenging to obtain sufficiently accurate representations of the environmental dynamics due to uncertainties in complex systems and environments. An inaccurate environment model may degrade the sample efficiency and performance of model-based RL. Furthermore, while model-based RL can improve sample efficiency, it often still requires substantial training time to learn from scratch, potentially limiting its advantages over model-free approaches. To address these challenges, this paper introduces a knowledge-informed model-based residual reinforcement learning framework aimed at enhancing learning efficiency by infusing established expert knowledge into the learning process and avoiding the issue of beginning from zero. Our approach integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics, thus ensuring adaptability to complex scenarios. We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch. The proposed approach is applied to CAV trajectory control tasks for the dissipation of stop-and-go waves in mixed traffic flow. Experimental results demonstrate that our proposed approach enables the CAV agent to achieve superior performance in trajectory control compared to the baseline agents in terms of sample efficiency, traffic flow smoothness and traffic mobility. The source code and supplementary materials are available at https://github.com/zihaosheng/traffic-expertise-RL/.
Related papers
- MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Simplified Temporal Consistency Reinforcement Learning [19.814047499837084]
We show that a simple representation learning approach relying on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL.
Our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.
arXiv Detail & Related papers (2023-06-15T19:37:43Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - Efficient Learning of Voltage Control Strategies via Model-based Deep
Reinforcement Learning [9.936452412191326]
This article proposes a model-based deep reinforcement learning (DRL) method to design emergency control strategies for short-term voltage stability problems in power systems.
Recent advances show promising results in model-free DRL-based methods for power systems, but model-free methods suffer from poor sample efficiency and training time.
We propose a novel model-based-DRL framework where a deep neural network (DNN)-based dynamic surrogate model is utilized with the policy learning framework.
arXiv Detail & Related papers (2022-12-06T02:50:53Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Uncertainty-Aware Model-Based Reinforcement Learning with Application to
Autonomous Driving [2.3303341607459687]
We propose a novel uncertainty-aware model-based reinforcement learning framework, and then implement and validate it in autonomous driving.
The framework is developed based on the adaptive truncation approach, providing virtual interactions between the agent and environment model.
The developed algorithms are then implemented in end-to-end autonomous vehicle control tasks, validated and compared with state-of-the-art methods under various driving scenarios.
arXiv Detail & Related papers (2021-06-23T06:55:14Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.