論文の概要: Interferometric Neural Networks
- arxiv url: http://arxiv.org/abs/2310.16742v1
- Date: Wed, 25 Oct 2023 16:17:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 13:39:51.876231
- Title: Interferometric Neural Networks
- Title(参考訳): 干渉型ニューラルネットワーク
- Authors: Arun Sehrawat
- Abstract要約: 干渉計で構成されるニューラルネットワークを導入し、そこから生成ネットワークを構築する。
私たちのネットワークには古典的な層はなく、量子コンピュータやフォトニックチップで実現できます。
マルチクラス画像分類タスクでは,ネットワークは93%,83%の精度を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: On the one hand, artificial neural networks have many successful applications
in the field of machine learning and optimization. On the other hand,
interferometers are integral parts of any field that deals with waves such as
optics, astronomy, and quantum physics. Here, we introduce neural networks
composed of interferometers and then build generative adversarial networks from
them. Our networks do not have any classical layer and can be realized on
quantum computers or photonic chips. We demonstrate their applicability for
combinatorial optimization, image classification, and image generation. For
combinatorial optimization, our network consistently converges to the global
optimum or remains within a narrow range of it. In multi-class image
classification tasks, our networks achieve accuracies of 93% and 83%. Lastly,
we show their capability to generate images of digits from 0 to 9 as well as
human faces.
- Abstract(参考訳): 一方、ニューラルネットワークは、機械学習と最適化の分野で多くの応用が成功している。
一方、干渉計は、光学、天文学、量子物理学などの波を扱うあらゆる分野の不可欠な部分である。
ここでは,干渉計からなるニューラルネットワークを導入し,それらから生成した逆ネットワークを構築する。
私たちのネットワークには古典的な層はなく、量子コンピュータやフォトニックチップで実現できます。
組み合わせ最適化,画像分類,画像生成に適用可能であることを示す。
組合せ最適化では、ネットワークは一貫して大域的最適化に収束するか、あるいは狭い範囲にとどまる。
マルチクラス画像分類タスクでは,ネットワークの精度は93%と83%である。
最後に,人間の顔だけでなく,0から9までの数字の画像を生成する能力を示す。
関連論文リスト
- An ensemble framework approach of hybrid Quantum convolutional neural networks for classification of breast cancer images [2.1659912179830023]
量子ニューラルネットワークは、ネットワークモデルを学習してスケールアップする能力において、古典的なニューラルネットワークを置き換えるのに適していると考えられている。
医用画像分類は、ディープラーニング、特に畳み込みニューラルネットワークの応用によく関係している。
論文 参考訳(メタデータ) (2024-09-24T10:43:27Z) - Hybrid Quantum-Classical Photonic Neural Networks [0.0]
従来のネットワーク層とトレーニング可能な連続可変量子回路の組み合わせを示す。
分類タスクでは、ハイブリッドネットワークは2倍の大きさの完全古典的ネットワークに対してベンチマークすると、同じ性能を達成する。
論文 参考訳(メタデータ) (2024-07-02T15:31:38Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Image segmentation with traveling waves in an exactly solvable recurrent
neural network [71.74150501418039]
繰り返しニューラルネットワークは、シーンの構造特性に応じて、画像をグループに効果的に分割できることを示す。
本稿では,このネットワークにおけるオブジェクトセグメンテーションのメカニズムを正確に記述する。
次に、グレースケール画像中の単純な幾何学的対象から自然画像まで、入力をまたいで一般化するオブジェクトセグメンテーションの簡単なアルゴリズムを実証する。
論文 参考訳(メタデータ) (2023-11-28T16:46:44Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - 11 TeraFLOPs per second photonic convolutional accelerator for deep
learning optical neural networks [0.0]
10 TeraFLOPS(1秒あたりの浮動小数点演算)を超える全光ベクトル畳み込み加速器を実証する。
次に、同じハードウェアを用いて、10個の出力ニューロンを持つ深部光学CNNを逐次形成し、900ピクセルの手書き数字画像と88%の精度で完全な10桁の認識を成功させる。
このアプローチはスケーラブルで、無人車やリアルタイムビデオ認識のような要求のあるアプリケーションのために、より複雑なネットワークに対してトレーニング可能である。
論文 参考訳(メタデータ) (2020-11-14T21:24:01Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Deep neural networks for the evaluation and design of photonic devices [0.0]
レビュー:ディープニューラルネットワークは、トレーニングセットからどのように学習し、高速サロゲート電磁解法として動作するか。
フォトニクスの文脈内での基本的なデータ科学についても論じる。
論文 参考訳(メタデータ) (2020-06-30T19:52:54Z) - Tensor Networks for Medical Image Classification [0.456877715768796]
我々は、量子多体システムを分析するために、過去20年間、物理学者のための仕事場であったネットワークのクラスに焦点を当てている。
医療画像解析に有用なマトリックス製品状態テンソルネットワークを拡張した。
テンソルネットワークは最先端のディープラーニング手法に匹敵する性能が得られることを示す。
論文 参考訳(メタデータ) (2020-04-21T15:02:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。