PGAD: Prototype-Guided Adaptive Distillation for Multi-Modal Learning in AD Diagnosis
- URL: http://arxiv.org/abs/2503.04836v1
- Date: Wed, 05 Mar 2025 14:39:31 GMT
- Title: PGAD: Prototype-Guided Adaptive Distillation for Multi-Modal Learning in AD Diagnosis
- Authors: Yanfei Li, Teng Yin, Wenyi Shang, Jingyu Liu, Xi Wang, Kaiyang Zhao,
- Abstract summary: Missing modalities pose a major issue in Alzheimer's Disease (AD) diagnosis.<n>Most existing methods train only on complete data, ignoring the large proportion of incomplete samples in real-world datasets like ADNI.<n>We propose a Prototype-Guided Adaptive Distillation (PGAD) framework that directly incorporates incomplete multi-modal data into training.
- Score: 4.455792848101014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Missing modalities pose a major issue in Alzheimer's Disease (AD) diagnosis, as many subjects lack full imaging data due to cost and clinical constraints. While multi-modal learning leverages complementary information, most existing methods train only on complete data, ignoring the large proportion of incomplete samples in real-world datasets like ADNI. This reduces the effective training set and limits the full use of valuable medical data. While some methods incorporate incomplete samples, they fail to effectively address inter-modal feature alignment and knowledge transfer challenges under high missing rates. To address this, we propose a Prototype-Guided Adaptive Distillation (PGAD) framework that directly incorporates incomplete multi-modal data into training. PGAD enhances missing modality representations through prototype matching and balances learning with a dynamic sampling strategy. We validate PGAD on the ADNI dataset with varying missing rates (20%, 50%, and 70%) and demonstrate that it significantly outperforms state-of-the-art approaches. Ablation studies confirm the effectiveness of prototype matching and adaptive sampling, highlighting the potential of our framework for robust and scalable AD diagnosis in real-world clinical settings.
Related papers
- PHGNN: A Novel Prompted Hypergraph Neural Network to Diagnose Alzheimer's Disease [2.1496312331703935]
We propose a novel Prompted Hypergraph Neural Network (PHGNN) framework that integrates hypergraph based learning with prompt learning.
Our model is validated through extensive experiments on the ADNI dataset, outperforming SOTA methods in both AD diagnosis and the prediction of MCI conversion.
arXiv Detail & Related papers (2025-03-18T16:10:43Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - AMM-Diff: Adaptive Multi-Modality Diffusion Network for Missing Modality Imputation [2.8498944632323755]
In clinical practice, full imaging is not always feasible, often due to complex acquisition protocols, stringent privacy regulations, or specific clinical needs.<n>A promising solution is missing data imputation, where absent modalities are generated from available ones.<n>We propose an Adaptive Multi-Modality Diffusion Network (AMM-Diff), a novel diffusion-based generative model capable of handling any number of input modalities and generating the missing ones.
arXiv Detail & Related papers (2025-01-22T12:29:33Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
arXiv Detail & Related papers (2023-10-25T19:02:57Z) - Domain-invariant Clinical Representation Learning by Bridging Data Distribution Shift across EMR Datasets [28.59271580918754]
An effective prognostic model could assist physicians in making accurate diagnoses and designing personalized treatment plans.<n>limited data collection, insufficient clinical experience, and privacy and ethical concerns restrict data availability.<n>We present a domain-invariant representation learning method that constructs a transition model between source and target datasets.
arXiv Detail & Related papers (2023-10-11T18:32:21Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.