論文の概要: Causal Q-Aggregation for CATE Model Selection
- arxiv url: http://arxiv.org/abs/2310.16945v1
- Date: Wed, 25 Oct 2023 19:27:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 23:47:28.064308
- Title: Causal Q-Aggregation for CATE Model Selection
- Title(参考訳): CATEモデル選択のための因果Q-集約
- Authors: Hui Lan, Vasilis Syrgkanis
- Abstract要約: 二重ロバストな損失を用いたQaggregationに基づく新しいCATEアンサンブル手法を提案する。
本研究の主な成果は,因果的Q集合が統計的に最適なモデル選択後悔率を達成することである。
- 参考スコア(独自算出の注目度): 24.094860486378167
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate estimation of conditional average treatment effects (CATE) is at the
core of personalized decision making. While there is a plethora of models for
CATE estimation, model selection is a nontrivial task, due to the fundamental
problem of causal inference. Recent empirical work provides evidence in favor
of proxy loss metrics with double robust properties and in favor of model
ensembling. However, theoretical understanding is lacking. Direct application
of prior theoretical work leads to suboptimal oracle model selection rates due
to the non-convexity of the model selection problem. We provide regret rates
for the major existing CATE ensembling approaches and propose a new CATE model
ensembling approach based on Q-aggregation using the doubly robust loss. Our
main result shows that causal Q-aggregation achieves statistically optimal
oracle model selection regret rates of $\frac{\log(M)}{n}$ (with $M$ models and
$n$ samples), with the addition of higher-order estimation error terms related
to products of errors in the nuisance functions. Crucially, our regret rate
does not require that any of the candidate CATE models be close to the truth.
We validate our new method on many semi-synthetic datasets and also provide
extensions of our work to CATE model selection with instrumental variables and
unobserved confounding.
- Abstract(参考訳): 条件平均治療効果(CATE)の正確な推定は、パーソナライズされた意思決定の中核にある。
CATE推定には多くのモデルが存在するが、因果推論の根本的な問題のため、モデル選択は非自明な作業である。
最近の実証研究は、二重ロバストな特性を持つプロキシ損失メトリクスとモデルアンサンブルを支持する証拠を提供する。
しかし、理論的な理解は不足している。
事前の理論的研究の直接適用は、モデル選択問題の非凸性に起因する最適オラクルモデル選択率につながる。
我々は,既存の主要なcate ensemblingアプローチに対する後悔率を提供し,二重ロバストな損失を用いたq集約に基づく新しいcate モデル ensemblingアプローチを提案する。
本結果から, 因果Q-集約は, 誤差関数の積に関する高次推定誤差項を付加することにより, 統計的に最適なオラクルモデル選択残差率$\frac{\log(M)}{n}$(M$モデルと$n$サンプルを含む)が得られることを示した。
重要なことは、我々の後悔率は、どの候補CATEモデルも真実に近いものを必要としない。
我々は、多くの半合成データセットで新しい手法を検証するとともに、モデル選択をインストゥルメンタル変数と非オブザーブドコンファウンディングで分類する作業の拡張も提供する。
関連論文リスト
- Unveiling the Potential of Robustness in Selecting Conditional Average Treatment Effect Estimators [19.053826145863113]
本稿では,CATE推定器選択のための分布ロバスト計量(DRM)を提案する。
DRMはニュアンスフリーであり、ニュアンスパラメータのモデルに適合する必要がなくなる。
分散的に堅牢なCATE推定器の選択を効果的に優先順位付けする。
論文 参考訳(メタデータ) (2024-02-28T15:12:24Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - The Choice of Noninformative Priors for Thompson Sampling in
Multiparameter Bandit Models [56.31310344616837]
トンプソンサンプリング(TS)は、様々な報酬モデルにまたがる理論的な保証によって支持される卓越した経験的性能で知られている。
本研究では,理論的理解の欠如のある新しいモデルを扱う際に,非形式的事前選択がTSの性能に与える影響について考察する。
論文 参考訳(メタデータ) (2023-02-28T08:42:42Z) - Out-of-sample scoring and automatic selection of causal estimators [0.0]
本稿では,CATEの場合と器楽変数問題の重要な部分集合に対する新しいスコアリング手法を提案する。
私たちはそれを、DoWhyとEconMLライブラリに依存するオープンソースパッケージで実装しています。
論文 参考訳(メタデータ) (2022-12-20T08:29:18Z) - Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation [24.65301562548798]
本研究では,因果推論におけるモデル選択の問題,特に条件付き平均処理効果(CATE)の推定について検討する。
本研究では,本研究で導入されたサロゲートモデル選択指標と,本研究で導入された新しい指標のベンチマークを行う。
論文 参考訳(メタデータ) (2022-11-03T16:26:06Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
本稿では, Aleatoric Uncertainty-aware Recommendation (AUR) フレームワークを提案する。
AURは、新しい不確実性推定器と通常のレコメンデータモデルで構成されている。
誤ラベルの可能性がペアの可能性を反映しているため、AURは不確実性に応じてレコメンデーションを行う。
論文 参考訳(メタデータ) (2022-09-22T04:32:51Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
本手法では, ノックオフ特徴量, エラーベース特徴重要度統計量, ステップダウン手順を一体化して, エラーベースのノックオフ推定手法を提案する。
提案手法では回帰モデルを指定する必要はなく,理論的保証で特徴選択を処理できる。
論文 参考訳(メタデータ) (2022-03-09T01:55:59Z) - A non-asymptotic penalization criterion for model selection in mixture
of experts models [1.491109220586182]
ガウス型局所化moe(glome)回帰モデルを用いて異種データをモデル化する。
このモデルは、統計的推定とモデル選択の問題に関して難しい疑問を提起する。
本稿では,GLoMEモデルの成分数を推定する問題について,最大推定法を用いて検討する。
論文 参考訳(メタデータ) (2021-04-06T16:24:55Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - On Statistical Efficiency in Learning [37.08000833961712]
モデルフィッティングとモデル複雑性のバランスをとるためのモデル選択の課題に対処する。
モデルの複雑さを順次拡大し、選択安定性を高め、コストを削減するオンラインアルゴリズムを提案します。
実験の結果, 提案手法は予測能力が高く, 計算コストが比較的低いことがわかった。
論文 参考訳(メタデータ) (2020-12-24T16:08:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。