Variational Stochastic Gradient Descent for Deep Neural Networks
- URL: http://arxiv.org/abs/2404.06549v1
- Date: Tue, 9 Apr 2024 18:02:01 GMT
- Title: Variational Stochastic Gradient Descent for Deep Neural Networks
- Authors: Haotian Chen, Anna Kuzina, Babak Esmaeili, Jakub M Tomczak,
- Abstract summary: Current state-of-the-arts are adaptive gradient-based optimization methods such as Adam.
Here, we propose to combine both approaches, resulting in the Variational Gradient Descent (VSGD)
We show how our VSGD method relates to other adaptive gradient-baseds like Adam.
- Score: 16.96187187108041
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing deep neural networks is one of the main tasks in successful deep learning. Current state-of-the-art optimizers are adaptive gradient-based optimization methods such as Adam. Recently, there has been an increasing interest in formulating gradient-based optimizers in a probabilistic framework for better estimation of gradients and modeling uncertainties. Here, we propose to combine both approaches, resulting in the Variational Stochastic Gradient Descent (VSGD) optimizer. We model gradient updates as a probabilistic model and utilize stochastic variational inference (SVI) to derive an efficient and effective update rule. Further, we show how our VSGD method relates to other adaptive gradient-based optimizers like Adam. Lastly, we carry out experiments on two image classification datasets and four deep neural network architectures, where we show that VSGD outperforms Adam and SGD.
Related papers
- MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
Large gradient algorithms like Adam, Adam, and their variants have been central to the development of this type of training.
We propose a framework that reconciles preconditioned gradient optimization methods with variance reduction via a scaled momentum technique.
arXiv Detail & Related papers (2024-11-15T18:57:39Z) - WarpAdam: A new Adam optimizer based on Meta-Learning approach [0.0]
This study introduces an innovative approach that merges the 'warped gradient descend' concept from Meta Learning with the Adam.
By introducing a learnable distortion matrix P within the adaptation matrix P, we aim to enhance the model's capability across diverse data distributions.
Our research showcases potential of this novel approach through theoretical insights and empirical evaluations.
arXiv Detail & Related papers (2024-09-06T12:51:10Z) - StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling [0.0]
We introduce StochGradAdam, a novel extension of the Adam algorithm, incorporating gradient sampling techniques.
StochGradAdam achieves comparable or superior performance to Adam, even when using fewer gradient updates per iteration.
The results suggest that this approach is particularly effective for large-scale models and datasets.
arXiv Detail & Related papers (2023-10-25T22:45:31Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Can we learn gradients by Hamiltonian Neural Networks? [68.8204255655161]
We propose a meta-learner based on ODE neural networks that learns gradients.
We demonstrate that our method outperforms a meta-learner based on LSTM for an artificial task and the MNIST dataset with ReLU activations in the optimizee.
arXiv Detail & Related papers (2021-10-31T18:35:10Z) - Exploiting Adam-like Optimization Algorithms to Improve the Performance
of Convolutional Neural Networks [82.61182037130405]
gradient descent (SGD) is the main approach for training deep networks.
In this work, we compare Adam based variants based on the difference between the present and the past gradients.
We have tested ensemble of networks and the fusion with ResNet50 trained with gradient descent.
arXiv Detail & Related papers (2021-03-26T18:55:08Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Weighted Aggregating Stochastic Gradient Descent for Parallel Deep
Learning [8.366415386275557]
Solution involves a reformation of the objective function for optimization in neural network models.
We introduce a decentralized weighted aggregating scheme based on the performance of local workers.
To validate the new method, we benchmark our schemes against several popular algorithms.
arXiv Detail & Related papers (2020-04-07T23:38:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.