論文の概要: MALADY: Multiclass Active Learning with Auction Dynamics on Graphs
- arxiv url: http://arxiv.org/abs/2409.09475v2
- Date: Wed, 16 Oct 2024 18:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 20:57:42.359753
- Title: MALADY: Multiclass Active Learning with Auction Dynamics on Graphs
- Title(参考訳): MALADY: グラフ上のオークションダイナミクスを用いたマルチクラスアクティブラーニング
- Authors: Gokul Bhusal, Kevin Miller, Ekaterina Merkurjev,
- Abstract要約: 効率的なアクティブラーニングのためのマルチクラスアクティブラーニングとオークション・ダイナミクス・オン・グラフ(MALADY)フレームワークを提案する。
我々は[24]における半教師付き学習のための類似性グラフ上のオークションダイナミクスアルゴリズムを一般化し、より一般的な最適化関数を組み込む。
また,オークションアルゴリズムの双対変数を用いて,分類器内の不確実性を測定し,異なるクラス間の決定境界付近のクエリを優先順位付けする,新しい能動的学習獲得関数を導入する。
- 参考スコア(独自算出の注目度): 0.9831489366502301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning enhances the performance of machine learning methods, particularly in semi-supervised cases, by judiciously selecting a limited number of unlabeled data points for labeling, with the goal of improving the performance of an underlying classifier. In this work, we introduce the Multiclass Active Learning with Auction Dynamics on Graphs (MALADY) framework which leverages the auction dynamics algorithm on similarity graphs for efficient active learning. In particular, we generalize the auction dynamics algorithm on similarity graphs for semi-supervised learning in [24] to incorporate a more general optimization functional. Moreover, we introduce a novel active learning acquisition function that uses the dual variable of the auction algorithm to measure the uncertainty in the classifier to prioritize queries near the decision boundaries between different classes. Lastly, using experiments on classification tasks, we evaluate the performance of our proposed method and show that it exceeds that of comparison algorithms.
- Abstract(参考訳): アクティブラーニングは、特に半教師付きケースにおいて、基礎となる分類器の性能を向上させることを目的として、ラベル付けのための限られた数のラベル付きデータポイントを任意に選択することで、機械学習手法の性能を向上させる。
本稿では,類似性グラフ上でのオークションダイナミクスを有効活用し,効率的なアクティブラーニングを実現するためのマルチクラスアクティブラーニング(MALADY)フレームワークを提案する。
特に,[24]における半教師付き学習のための類似性グラフ上のオークションダイナミクスアルゴリズムを一般化し,より汎用的な最適化関数を組み込む。
さらに,オークションアルゴリズムの二重変数を用いて,分類器内の不確実性を測定し,異なるクラス間の決定境界付近のクエリを優先順位付けする,新しい能動的学習獲得関数を導入する。
最後に、分類タスクの実験を用いて、提案手法の性能を評価し、比較アルゴリズムよりも優れていることを示す。
関連論文リスト
- Learning to Rank for Active Learning via Multi-Task Bilevel Optimization [29.207101107965563]
データ取得のための学習代理モデルを用いて、ラベルのないインスタンスのバッチを選択することを目的とした、アクティブな学習のための新しいアプローチを提案する。
このアプローチにおける重要な課題は、ユーティリティ関数の入力の一部を構成するデータの歴史が時間とともに増大するにつれて、よく一般化する取得関数を開発することである。
論文 参考訳(メタデータ) (2023-10-25T22:50:09Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - Active Learning for Open-set Annotation [38.739845944840454]
我々はLfOSAと呼ばれる新しいアクティブラーニングフレームワークを提案する。このフレームワークは、効果的なサンプリング戦略を用いて分類性能を高め、アノテーションのための既知のクラスからサンプルを正確に検出する。
実験結果から,提案手法は既知のクラスの選択精度を著しく向上し,アノテーションコストの低い分類精度を最先端の能動学習法よりも向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-01-18T06:11:51Z) - Probabilistic Active Learning for Active Class Selection [3.6471065658293043]
機械学習において、アクティブクラス選択(ACS)アルゴリズムは、クラスを積極的に選択し、そのクラスのインスタンスを提供することをオラクルに依頼することを目的としている。
本稿では,ACS問題を擬似インスタンスを導入して能動的学習タスクに変換するアルゴリズム(PAL-ACS)を提案する。
論文 参考訳(メタデータ) (2021-08-09T09:20:19Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
本稿では,新たなエンド・ツー・エンドの知識指向学習フレームワークを提案する。
2つの競合符号化分布を用いてクラス条件付きクラス内不一致を表現し、学習された不一致を識別することで精製された潜伏符号を学習する。
4つのHARベンチマークデータセットに対する実験により,提案手法の頑健性と,最先端の手法による一般化が実証された。
論文 参考訳(メタデータ) (2020-07-14T05:46:27Z) - A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching [17.064993611446898]
本稿では,EMのための統合型アクティブラーニングベンチマークフレームワークを構築する。
このフレームワークの目的は、積極的学習の組み合わせがEMにどのような効果をもたらすかについて、実践者のための具体的なガイドラインを可能にすることである。
また、F1スコアの観点から学習モデルの品質を約9%向上し、モデルの品質に影響を与えることなく、サンプル選択のレイテンシを最大10倍削減する新しい最適化も含んでいる。
論文 参考訳(メタデータ) (2020-03-29T19:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。