HyperFields: Towards Zero-Shot Generation of NeRFs from Text
- URL: http://arxiv.org/abs/2310.17075v3
- Date: Thu, 13 Jun 2024 17:59:14 GMT
- Title: HyperFields: Towards Zero-Shot Generation of NeRFs from Text
- Authors: Sudarshan Babu, Richard Liu, Avery Zhou, Michael Maire, Greg Shakhnarovich, Rana Hanocka,
- Abstract summary: We introduce HyperFields, a method for generating text-conditioned Neural Radiance Fields (NeRFs) with a single forward pass.
Key to our approach are: (i) a dynamic hypernetwork, which learns a smooth mapping from text token embeddings to the space of NeRFs; (ii) NeRF distillation training, which distills scenes encoded in individual NeRFs into one dynamic hypernetwork.
- Score: 30.223443632782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce HyperFields, a method for generating text-conditioned Neural Radiance Fields (NeRFs) with a single forward pass and (optionally) some fine-tuning. Key to our approach are: (i) a dynamic hypernetwork, which learns a smooth mapping from text token embeddings to the space of NeRFs; (ii) NeRF distillation training, which distills scenes encoded in individual NeRFs into one dynamic hypernetwork. These techniques enable a single network to fit over a hundred unique scenes. We further demonstrate that HyperFields learns a more general map between text and NeRFs, and consequently is capable of predicting novel in-distribution and out-of-distribution scenes -- either zero-shot or with a few finetuning steps. Finetuning HyperFields benefits from accelerated convergence thanks to the learned general map, and is capable of synthesizing novel scenes 5 to 10 times faster than existing neural optimization-based methods. Our ablation experiments show that both the dynamic architecture and NeRF distillation are critical to the expressivity of HyperFields.
Related papers
- NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
We propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges.
Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages.
NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques.
arXiv Detail & Related papers (2024-03-02T22:08:10Z) - HyperPlanes: Hypernetwork Approach to Rapid NeRF Adaptation [4.53411151619456]
We propose a few-shot learning approach based on the hypernetwork paradigm that does not require gradient optimization during inference.
We have developed an efficient method for generating a high-quality 3D object representation from a small number of images in a single step.
arXiv Detail & Related papers (2024-02-02T16:10:29Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - ZeroRF: Fast Sparse View 360{\deg} Reconstruction with Zero Pretraining [28.03297623406931]
Current breakthroughs like Neural Radiance Fields (NeRF) have demonstrated high-fidelity image synthesis but struggle with sparse input views.
We propose ZeroRF, whose key idea is to integrate a tailored Deep Image Prior into a factorized NeRF representation.
Unlike traditional methods, ZeroRF parametrizes feature grids with a neural network generator, enabling efficient sparse view 360deg reconstruction.
arXiv Detail & Related papers (2023-12-14T18:59:32Z) - Prompt2NeRF-PIL: Fast NeRF Generation via Pretrained Implicit Latent [61.56387277538849]
This paper explores promptable NeRF generation for direct conditioning and fast generation of NeRF parameters for the underlying 3D scenes.
Prompt2NeRF-PIL is capable of generating a variety of 3D objects with a single forward pass.
We will show that our approach speeds up the text-to-NeRF model DreamFusion and the 3D reconstruction speed of the image-to-NeRF method Zero-1-to-3 by 3 to 5 times.
arXiv Detail & Related papers (2023-12-05T08:32:46Z) - InsertNeRF: Instilling Generalizability into NeRF with HyperNet Modules [23.340064406356174]
Generalizing Neural Radiance Fields (NeRF) to new scenes is a significant challenge.
We introduce InsertNeRF, a method for INStilling gEneRalizabiliTy into NeRF.
arXiv Detail & Related papers (2023-08-26T14:50:24Z) - OD-NeRF: Efficient Training of On-the-Fly Dynamic Neural Radiance Fields [63.04781030984006]
Dynamic neural radiance fields (dynamic NeRFs) have demonstrated impressive results in novel view synthesis on 3D dynamic scenes.
We propose OD-NeRF to efficiently train and render dynamic NeRFs on-the-fly which instead is capable of streaming the dynamic scene.
Our algorithm can achieve an interactive speed of 6FPS training and rendering on synthetic dynamic scenes on-the-fly, and a significant speed-up compared to the state-of-the-art on real-world dynamic scenes.
arXiv Detail & Related papers (2023-05-24T07:36:47Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes [27.37830742693236]
We present DeVRF, a novel representation to accelerate learning dynamic radiance fields.
Experiments demonstrate that DeVRF achieves two orders of magnitude speedup with on-par high-fidelity results.
arXiv Detail & Related papers (2022-05-31T12:13:54Z) - Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs [54.41204057689033]
We explore how to leverage neural fields (NeRFs) to build interactive 3D environments from large-scale visual captures spanning buildings or even multiple city blocks collected primarily from drone data.
In contrast to the single object scenes against which NeRFs have been traditionally evaluated, this setting poses multiple challenges.
We introduce a simple clustering algorithm that partitions training images (or rather pixels) into different NeRF submodules that can be trained in parallel.
arXiv Detail & Related papers (2021-12-20T17:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.