LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs?
- URL: http://arxiv.org/abs/2310.17110v3
- Date: Mon, 8 Jul 2024 05:39:38 GMT
- Title: LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs?
- Authors: Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, Wenwu Zhu,
- Abstract summary: This paper proposes to evaluate Large Language Models' spatial-temporal understanding abilities on dynamic graphs.
We conduct experiments to analyze the impacts of different data generators, data statistics, prompting techniques, and LLMs on the model performance.
Finally, we propose Disentangled Spatial-Temporal Thoughts (DST2) for LLMs on dynamic graphs to enhance LLMs' spatial-temporal understanding abilities.
- Score: 56.85995048874959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an era marked by the increasing adoption of Large Language Models (LLMs) for various tasks, there is a growing focus on exploring LLMs' capabilities in handling web data, particularly graph data. Dynamic graphs, which capture temporal network evolution patterns, are ubiquitous in real-world web data. Evaluating LLMs' competence in understanding spatial-temporal information on dynamic graphs is essential for their adoption in web applications, which remains unexplored in the literature. In this paper, we bridge the gap via proposing to evaluate LLMs' spatial-temporal understanding abilities on dynamic graphs, to the best of our knowledge, for the first time. Specifically, we propose the LLM4DyG benchmark, which includes nine specially designed tasks considering the capability evaluation of LLMs from both temporal and spatial dimensions. Then, we conduct extensive experiments to analyze the impacts of different data generators, data statistics, prompting techniques, and LLMs on the model performance. Finally, we propose Disentangled Spatial-Temporal Thoughts (DST2) for LLMs on dynamic graphs to enhance LLMs' spatial-temporal understanding abilities. Our main observations are: 1) LLMs have preliminary spatial-temporal understanding abilities on dynamic graphs, 2) Dynamic graph tasks show increasing difficulties for LLMs as the graph size and density increase, while not sensitive to the time span and data generation mechanism, 3) the proposed DST2 prompting method can help to improve LLMs' spatial-temporal understanding abilities on dynamic graphs for most tasks. The data and codes are publicly available at Github.
Related papers
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Graph Machine Learning in the Era of Large Language Models (LLMs) [44.25731266093967]
Graphs play an important role in representing complex relationships in various domains like social networks, knowledge graphs, and molecular discovery.
With the advent of deep learning, Graph Neural Networks (GNNs) have emerged as a cornerstone in Graph Machine Learning (Graph ML)
Recently, LLMs have demonstrated unprecedented capabilities in language tasks and are widely adopted in a variety of applications such as computer vision and recommender systems.
arXiv Detail & Related papers (2024-04-23T11:13:39Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - Can we Soft Prompt LLMs for Graph Learning Tasks? [22.286189757942054]
GraphPrompter is a framework designed to align graph information with Large Language Models (LLMs) via soft prompts.
The framework unveils the substantial capabilities of LLMs as predictors in graph-related tasks.
arXiv Detail & Related papers (2024-02-15T23:09:42Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.