Relational Object-Centric Actor-Critic
- URL: http://arxiv.org/abs/2310.17178v2
- Date: Thu, 20 Mar 2025 12:30:17 GMT
- Title: Relational Object-Centric Actor-Critic
- Authors: Leonid Ugadiarov, Vitaliy Vorobyov, Aleksandr I. Panov,
- Abstract summary: Recent works highlight that disentangled object representations can aid policy learning in image-based, object-centric reinforcement learning tasks.<n>This paper proposes a novel object-centric reinforcement learning algorithm that integrates actor-critic and model-based approaches.<n>We evaluate our method in a simulated 3D robotic environment and a 2D environment with compositional structure.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advances in unsupervised object-centric representation learning have significantly improved its application to downstream tasks. Recent works highlight that disentangled object representations can aid policy learning in image-based, object-centric reinforcement learning tasks. This paper proposes a novel object-centric reinforcement learning algorithm that integrates actor-critic and model-based approaches by incorporating an object-centric world model within the critic. The world model captures the environment's data-generating process by predicting the next state and reward given the current state-action pair, where actions are interventions in the environment. In model-based reinforcement learning, world model learning can be interpreted as a causal induction problem, where the agent must learn the causal relationships underlying the environment's dynamics. We evaluate our method in a simulated 3D robotic environment and a 2D environment with compositional structure. As baselines, we compare against object-centric, model-free actor-critic algorithms and a state-of-the-art monolithic model-based algorithm. While the baselines show comparable performance in easier tasks, our approach outperforms them in more challenging scenarios with a large number of objects or more complex dynamics.
Related papers
- Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
We introduce a framework in which a model must determine the factors influencing a hidden reward function.
We investigate whether approaches such as self- throughput and increased inference time improve information gathering efficiency.
arXiv Detail & Related papers (2024-12-09T12:27:21Z) - Efficient Exploration and Discriminative World Model Learning with an Object-Centric Abstraction [19.59151245929067]
We study whether giving an agent an object-centric mapping (describing a set of items and their attributes) allow for more efficient learning.
We find this problem is best solved hierarchically by modelling items at a higher level of state abstraction to pixels.
We make use of this to propose a fully model-based algorithm that learns a discriminative world model.
arXiv Detail & Related papers (2024-08-21T17:59:31Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.
voxelization infers per-object occupancy probabilities at individual spatial locations.
Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
We show that reconstructing features from models trained in a self-supervised manner is a sufficient training signal for object-centric representations to arise in a fully unsupervised way.
Our approach, DINOSAUR, significantly out-performs existing object-centric learning models on simulated data.
arXiv Detail & Related papers (2022-09-29T15:24:47Z) - Object Detection with Deep Reinforcement Learning [0.0]
We implement a novel active object localization algorithm based on deep reinforcement learning.
We compare two different action settings for this MDP: a hierarchical method and a dynamic method.
arXiv Detail & Related papers (2022-08-09T02:34:53Z) - Curious Exploration via Structured World Models Yields Zero-Shot Object
Manipulation [19.840186443344]
We propose to use structured world models to incorporate inductive biases in the control loop to achieve sample-efficient exploration.
Our method generates free-play behavior that starts to interact with objects early on and develops more complex behavior over time.
arXiv Detail & Related papers (2022-06-22T22:08:50Z) - Object Scene Representation Transformer [56.40544849442227]
We introduce Object Scene Representation Transformer (OSRT), a 3D-centric model in which individual object representations naturally emerge through novel view synthesis.
OSRT scales to significantly more complex scenes with larger diversity of objects and backgrounds than existing methods.
It is multiple orders of magnitude faster at compositional rendering thanks to its light field parametrization and the novel Slot Mixer decoder.
arXiv Detail & Related papers (2022-06-14T15:40:47Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
We propose a novel multitask auto encoding transformation (MAET) model to enhance object detection in a dark environment.
In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation.
We have achieved the state-of-the-art performance using synthetic and real-world datasets.
arXiv Detail & Related papers (2022-05-06T16:27:14Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
We tackle the problem of learning to control dynamical systems by applying Bayesian nonparametric methods.
By employing Gaussian processes to discover latent world dynamics, we mitigate common data efficiency issues observed in reinforcement learning.
Our algorithm jointly learns a world model and policy by optimizing a variational lower bound of a log-likelihood.
arXiv Detail & Related papers (2021-10-27T04:27:28Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Neural Topological SLAM for Visual Navigation [112.73876869904]
We design topological representations for space that leverage semantics and afford approximate geometric reasoning.
We describe supervised learning-based algorithms that can build, maintain and use such representations under noisy actuation.
arXiv Detail & Related papers (2020-05-25T17:56:29Z) - Relevance-Guided Modeling of Object Dynamics for Reinforcement Learning [0.0951828574518325]
Current deep reinforcement learning (RL) approaches incorporate minimal prior knowledge about the environment.
We propose a framework for reasoning about object dynamics and behavior to rapidly determine minimal and task-specific object representations.
We also highlight the potential of this framework on several Atari games, using our object representation and standard RL and planning algorithms to learn dramatically faster than existing deep RL algorithms.
arXiv Detail & Related papers (2020-03-03T08:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.