Joint Entity and Relation Extraction with Span Pruning and Hypergraph
Neural Networks
- URL: http://arxiv.org/abs/2310.17238v1
- Date: Thu, 26 Oct 2023 08:36:39 GMT
- Title: Joint Entity and Relation Extraction with Span Pruning and Hypergraph
Neural Networks
- Authors: Zhaohui Yan, Songlin Yang, Wei Liu, Kewei Tu
- Abstract summary: We propose HyperGraph neural network for ERE ($hgnn$), which is built upon the PL-marker (a state-of-the-art marker-based pipleline model)
To alleviate error propagation,we use a high-recall pruner mechanism to transfer the burden of entity identification and labeling from the NER module to the joint module of our model.
Experiments on three widely used benchmarks for ERE task show significant improvements over the previous state-of-the-art PL-marker.
- Score: 58.43972540643903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity and Relation Extraction (ERE) is an important task in information
extraction. Recent marker-based pipeline models achieve state-of-the-art
performance, but still suffer from the error propagation issue. Also, most of
current ERE models do not take into account higher-order interactions between
multiple entities and relations, while higher-order modeling could be
beneficial.In this work, we propose HyperGraph neural network for ERE
($\hgnn{}$), which is built upon the PL-marker (a state-of-the-art marker-based
pipleline model). To alleviate error propagation,we use a high-recall pruner
mechanism to transfer the burden of entity identification and labeling from the
NER module to the joint module of our model. For higher-order modeling, we
build a hypergraph, where nodes are entities (provided by the span pruner) and
relations thereof, and hyperedges encode interactions between two different
relations or between a relation and its associated subject and object entities.
We then run a hypergraph neural network for higher-order inference by applying
message passing over the built hypergraph. Experiments on three widely used
benchmarks (\acef{}, \ace{} and \scierc{}) for ERE task show significant
improvements over the previous state-of-the-art PL-marker.
Related papers
- Relation Rectification in Diffusion Model [64.84686527988809]
We introduce a novel task termed Relation Rectification, aiming to refine the model to accurately represent a given relationship it initially fails to generate.
We propose an innovative solution utilizing a Heterogeneous Graph Convolutional Network (HGCN)
The lightweight HGCN adjusts the text embeddings generated by the text encoder, ensuring the accurate reflection of the textual relation in the embedding space.
arXiv Detail & Related papers (2024-03-29T15:54:36Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data.
This work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators.
We evaluate ED-HNN for node classification on nine real-world hypergraph datasets.
arXiv Detail & Related papers (2022-07-14T06:17:00Z) - Message Passing Neural Networks for Hypergraphs [6.999112784624749]
We present the first graph neural network based on message passing capable of processing hypergraph-structured data.
We show that the proposed model defines a design space for neural network models for hypergraphs, thus generalizing existing models for hypergraphs.
arXiv Detail & Related papers (2022-03-31T12:38:22Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - Residual Enhanced Multi-Hypergraph Neural Network [26.42547421121713]
HyperGraph Neural Network (HGNN) is the de-facto method for hypergraph representation learning.
We propose the Residual enhanced Multi-Hypergraph Neural Network, which can fuse multi-modal information from each hypergraph effectively.
arXiv Detail & Related papers (2021-05-02T14:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.