論文の概要: IDENAS: Internal Dependency Exploration for Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2310.17250v1
- Date: Thu, 26 Oct 2023 08:58:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 21:10:31.126060
- Title: IDENAS: Internal Dependency Exploration for Neural Architecture Search
- Title(参考訳): IDENAS: ニューラルネットワーク検索のための内部依存性探索
- Authors: Anh T. Hoang, Zsolt J. Viharos
- Abstract要約: 内部依存に基づくニューラルアーキテクチャ探索(NAS)とフィーチャーセレクションは、このようなシナリオで有望なソリューションとして現れている。
本研究は、内部依存に基づくニューラルアーキテクチャ探索であるIDENASを提案し、NASと特徴選択を統合する。
本手法は1次元センサと2次元画像データを含む分類のための完全パラメータ空間の内部依存性についても検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning is a powerful tool for extracting valuable information and
making various predictions from diverse datasets. Traditional algorithms rely
on well-defined input and output variables however, there are scenarios where
the distinction between the input and output variables and the underlying,
associated (input and output) layers of the model, are unknown. Neural
Architecture Search (NAS) and Feature Selection have emerged as promising
solutions in such scenarios. This research proposes IDENAS, an Internal
Dependency-based Exploration for Neural Architecture Search, integrating NAS
with feature selection. The methodology explores internal dependencies in the
complete parameter space for classification involving 1D sensor and 2D image
data as well. IDENAS employs a modified encoder-decoder model and the
Sequential Forward Search (SFS) algorithm, combining input-output configuration
search with embedded feature selection. Experimental results demonstrate
IDENASs superior performance in comparison to other algorithms, showcasing its
effectiveness in model development pipelines and automated machine learning. On
average, IDENAS achieved significant modelling improvements, underscoring its
significant contribution to advancing the state-of-the-art in neural
architecture search and feature selection integration.
- Abstract(参考訳): 機械学習は、貴重な情報を抽出し、多様なデータセットから様々な予測を行うための強力なツールである。
従来のアルゴリズムは、適切に定義された入力変数と出力変数に依存するが、入力変数と出力変数の区別と、モデルの基本となる(入力と出力)レイヤが不明なシナリオが存在する。
このようなシナリオでは、ニューラルネットワーク検索(nas)と機能選択が有望なソリューションとして現れています。
本研究は、内部依存に基づくニューラルアーキテクチャ探索であるIDENASを提案し、NASと特徴選択を統合する。
この方法論は、1dセンサーと2d画像データを含む分類のための完全なパラメータ空間の内部依存性を探索する。
IDENASは修正エンコーダデコーダモデルとSequential Forward Search (SFS)アルゴリズムを採用し、入力出力構成検索と組込み特徴選択を組み合わせた。
実験結果は、他のアルゴリズムと比較して優れた性能を示し、モデル開発パイプラインと自動機械学習での有効性を示す。
平均してIDENASは、ニューラルネットワーク検索の最先端化と機能選択統合への重要な貢献を強調し、大きなモデリング改善を達成した。
関連論文リスト
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
ニューラルアーキテクチャサーチ(NAS)により、リサーチ者は広大なサーチスペースを自動的に探索し、効率的なニューラルネットワークを見つけることができる。
NASは重要なボトルネックに悩まされており、探索プロセス中に多くのアーキテクチャを評価する必要がある。
SMEM-NASは,多集団構造に基づく多目的進化アルゴリズムである。
論文 参考訳(メタデータ) (2024-07-22T12:46:22Z) - DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - Multi-objective Differentiable Neural Architecture Search [58.67218773054753]
本研究では,パフォーマンスとハードウェアメトリクスのトレードオフのために,ユーザの好みを符号化するNASアルゴリズムを提案する。
提案手法は,既存のMOO NAS手法を,定性的に異なる検索空間やデータセットの広い範囲で性能良くする。
論文 参考訳(メタデータ) (2024-02-28T10:09:04Z) - Evolution and Efficiency in Neural Architecture Search: Bridging the Gap Between Expert Design and Automated Optimization [1.7385545432331702]
本稿では,ニューラルネットワーク検索の概要について概説する。
手動設計から自動化された計算駆動アプローチへの進化を強調している。
医療画像や自然言語処理など、さまざまな分野の応用を強調している。
論文 参考訳(メタデータ) (2024-02-11T18:27:29Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
本稿では、異なるハードウェア環境と複数の分類タスクを対象とした逐次モデルベースNASアルゴリズムの第3版について述べる。
提案手法は,異なるタスクに適応するフレキシブルな構造とデータ処理パイプラインを維持しながら,大規模な検索空間内で競合するアーキテクチャを見つけることができる。
画像と時系列の分類データセットで実施された実験は、POPNASv3が多種多様な演算子を探索し、異なるシナリオで提供されるデータの種類に適した最適なアーキテクチャに収束できることを示す。
論文 参考訳(メタデータ) (2022-12-13T17:14:14Z) - EmotionNAS: Two-stream Neural Architecture Search for Speech Emotion
Recognition [48.71010404625924]
本稿では,2ストリームのニューラルアーキテクチャ探索フレームワークであるenquoteEmotionNASを提案する。
具体的には、入力として2つのストリーム特徴(例えば、手工芸品と深い特徴)を取り、次にNASを用いて各ストリームの最適構造を探索する。
実験の結果,本手法は手動設計モデルやNASモデルよりも優れていた。
論文 参考訳(メタデータ) (2022-03-25T12:35:44Z) - Towards Tailored Models on Private AIoT Devices: Federated Direct Neural
Architecture Search [22.69123714900226]
デバイス間の非IDデータからハードウェアフレンドリなNASを実現するためのFDNAS(Federated Direct Neural Architecture Search)フレームワークを提案する。
非IIDデータセットの実験では、提案したソリューションによって達成された最先端の精度効率トレードオフが示されている。
論文 参考訳(メタデータ) (2022-02-23T13:10:01Z) - Differentiable NAS Framework and Application to Ads CTR Prediction [30.74403362212425]
我々は、微分可能なニューラルネットワーク探索(DNAS)のための推論およびモジュラーフレームワークを実装している。
DNASを広告クリックスルー率(CTR)予測の問題に適用する。
我々は、CTR予測のための深層学習勧告モデル(DLRM)のバックボーンに新しい検索空間を開発し、調整し、Criteo Kaggle CTR予測データセットの最先端結果を報告する。
論文 参考訳(メタデータ) (2021-10-25T05:46:27Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
ディリクレ分布をモデルとした連続緩和型混合重みをランダム変数として扱う。
最近開発されたパスワイズ微分により、ディリクレパラメータは勾配に基づく一般化で容易に最適化できる。
微分可能なNASの大きなメモリ消費を軽減するために, 単純かつ効果的な進行学習方式を提案する。
論文 参考訳(メタデータ) (2020-06-18T08:23:02Z) - Progressive Automatic Design of Search Space for One-Shot Neural
Architecture Search [15.017964136568061]
単発モデルの精度が高いモデルでは,スタンドアローンの訓練では必ずしも優れた性能が得られない。
PAD-NASという検索空間のプログレッシブ自動設計を提案する。
このようにして、PAD-NASは各レイヤの操作を自動的に設計し、検索空間の品質とモデルの多様性のトレードオフを達成できる。
論文 参考訳(メタデータ) (2020-05-15T14:21:07Z) - NAS-Count: Counting-by-Density with Neural Architecture Search [74.92941571724525]
ニューラルアーキテクチャサーチ(NAS)を用いたカウントモデルの設計を自動化する
エンド・ツー・エンドの検索エンコーダ・デコーダアーキテクチャであるAutomatic Multi-Scale Network(AMSNet)を導入する。
論文 参考訳(メタデータ) (2020-02-29T09:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。