論文の概要: Model Input-Output Configuration Search with Embedded Feature Selection for Sensor Time-series and Image Classification
- arxiv url: http://arxiv.org/abs/2310.17250v2
- Date: Tue, 04 Feb 2025 07:30:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:56:09.941592
- Title: Model Input-Output Configuration Search with Embedded Feature Selection for Sensor Time-series and Image Classification
- Title(参考訳): センサ時系列と画像分類のための組込み特徴選択を用いたモデル入力出力構成探索
- Authors: Anh T. Hoang, Zsolt J. Viharos,
- Abstract要約: MICS-EFSは、組込み特徴選択を伴うモデル入力出力構成探索である。
ベースラインモデルよりも平均精度が1.5%向上している。
特徴次元を元のデータの2-5%に減らし、計算効率を大幅に向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning is a powerful tool for extracting valuable information and making various predictions from diverse datasets. Traditional machine learning algorithms rely on well-defined input and output variables; however, there are scenarios where the separation between the input and output variables and the underlying, associated input and output layers of the model are unknown. Feature Selection (FS) and Neural Architecture Search (NAS) have emerged as promising solutions in such scenarios. This paper proposes MICS-EFS, a Model Input-Output Configuration Search with Embedded Feature Selection. The methodology explores internal dependencies in the complete input parameter space for classification tasks involving both 1D sensor time-series and 2D image data. MICS-EFS employs a modified encoder-decoder model and the Sequential Forward Search (SFS) algorithm, combining input-output configuration search with embedded feature selection. Experimental results demonstrate the superior performance of MICS-EFS compared to other FS algorithms. Across all tested datasets, MICS-EFS delivered an average accuracy improvement of 1.5% over baseline models, with the accuracy gains ranging from 0.5% to 5.9%. Moreover, the algorithm reduced feature dimensionality to just 2-5% of the original data, significantly enhancing computational efficiency. These results highlight the potential of MICS-EFS to improve model accuracy and efficiency in various machine learning tasks. Furthermore, the proposed method has been validated in a real-world industrial application focused on machining processes, underscoring its effectiveness and practicality in addressing complex input-output challenges.
- Abstract(参考訳): 機械学習は、貴重な情報を抽出し、多様なデータセットから様々な予測を行うための強力なツールである。
従来の機械学習アルゴリズムは、適切に定義された入力変数と出力変数に依存しているが、入力変数と出力変数の分離と、モデルの基本となる、関連する入力層と出力層が不明なシナリオが存在する。
機能選択(FS)とニューラルアーキテクチャ検索(NAS)は、このようなシナリオで有望なソリューションとして現れている。
本稿では,組込み特徴選択を用いたモデル入力出力構成探索MICS-EFSを提案する。
本手法は,1次元センサ時系列と2次元画像データの両方を含む分類タスクに対して,完全な入力パラメータ空間の内部依存性について検討する。
MICS-EFSは修正エンコーダデコーダモデルと逐次フォワードサーチ (Sequential Forward Search, SFS) アルゴリズムを採用し、入力出力構成探索と組込み特徴選択を組み合わせた。
実験により,他のFSアルゴリズムと比較してMICS-EFSの性能が優れていることが示された。
すべてのテストデータセットで、MICS-EFSはベースラインモデルよりも平均精度が1.5%向上し、精度は0.5%から5.9%向上した。
さらに、アルゴリズムは特徴次元を元のデータの2-5%に減らし、計算効率を大幅に向上させた。
これらの結果は、様々な機械学習タスクにおけるモデル精度と効率を改善するMICS-EFSの可能性を強調している。
さらに, この手法は, 複雑な入出力問題に対処する上での有効性と実用性を実証し, 加工プロセスに焦点をあてた実世界の産業応用で検証されている。
関連論文リスト
- Efficient Network Traffic Feature Sets for IoT Intrusion Detection [0.0]
この研究は、複数のIoTネットワークデータセットで、Information Gain、Chi-Squared Test、Recursive Feature Elimination、Mean Absolute Deviation、Dispersion Ratioといった、さまざまな機能選択メソッドの組み合わせによって提供される機能セットを評価します。
より小さな特徴セットがMLモデルの分類性能とトレーニング時間の両方に与える影響を比較し,IoT侵入検出の計算効率を高めることを目的とした。
論文 参考訳(メタデータ) (2024-06-12T09:51:29Z) - Multiple-Input Auto-Encoder Guided Feature Selection for IoT Intrusion Detection Systems [30.16714420093091]
本稿ではまず,Multiple-Input Auto-Encoder (MIAE)と呼ばれる新しいニューラルネットワークアーキテクチャを紹介する。
MIAEは複数のサブエンコーダで構成されており、異なる特性を持つ異なるソースからの入力を処理できる。
より関連性の高い機能を排除し、保持するために、トレーニングプロセスにおいて重要/冗長でないものを取り除くために、我々はさらに機能選択層を設計し、組み込む。
この層は表現ベクトルにおける特徴の重要性を学習し、表現ベクトルから情報的特徴の選択を容易にする。
論文 参考訳(メタデータ) (2024-03-22T03:54:04Z) - AFS-BM: Enhancing Model Performance through Adaptive Feature Selection with Binary Masking [0.0]
連立マスキングによる適応的特徴選択(AFS-BM)について紹介する。
トレーニングプロセス中に特徴セットとモデルパラメータを継続的に適応するために、共同最適化とバイナリマスキングを実施します。
以上の結果から,AFS-BMの精度は大幅に向上し,計算量も大幅に削減された。
論文 参考訳(メタデータ) (2024-01-20T15:09:41Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
現在の物体検出器は、通常マルチレベル特徴融合(MFF)のための特徴ピラミッド(FP)モジュールを持つ。
我々は,既存のFPがより優れたMFF結果を提供するのに役立つ,新しい,効率的なコンテキストモデリング機構を提案する。
特に,包括的文脈を2種類の表現に分解・凝縮して高効率化を図っている。
論文 参考訳(メタデータ) (2022-07-14T01:45:03Z) - Concurrent Neural Tree and Data Preprocessing AutoML for Image
Classification [0.5735035463793008]
現在のSOTA (State-of-the-art) には、アルゴリズム検索空間の一部として入力データを操作するための従来の手法は含まれていない。
進化的多目的アルゴリズム設計エンジン(EMADE, Evolutionary Multi-objective Algorithm Design Engine)は、従来の機械学習手法のための多目的進化的検索フレームワークである。
CIFAR-10画像分類ベンチマークデータセットにおいて,これらの手法を検索空間の一部として含めることで,性能向上の可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-25T20:03:09Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
入力出力クエリの静的データセットからブラックボックス目的関数を最大化する入力を探索する問題を考える。
この問題を解決するための一般的なアプローチは、真の客観的関数を近似するプロキシモデルを維持することである。
ここでの大きな課題は、検索中に逆最適化された入力を避ける方法である。
論文 参考訳(メタデータ) (2021-10-27T05:37:12Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
ASFD(Automatic and Scalable Face Detector)を提案する。
ASFDはニューラルアーキテクチャ検索技術の組み合わせと新たな損失設計に基づいている。
ASFD-D0は120FPS以上で動作し、MobilenetはVGA解像度の画像を撮影しています。
論文 参考訳(メタデータ) (2020-03-25T06:00:47Z) - ARDA: Automatic Relational Data Augmentation for Machine Learning [23.570173866941612]
本稿では,データセットとデータレポジトリを入力とし,拡張データセットを出力するエンド・ツー・エンドシステムを提案する。
本システムは,(1)入力の様々な属性に基づいて,入力データとデータを検索し結合するフレームワークと,(2)入力データからノイズや不適切な特徴を抽出する効率的な特徴選択アルゴリズムの2つの特徴を有する。
論文 参考訳(メタデータ) (2020-03-21T21:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。