Demonstration-Regularized RL
- URL: http://arxiv.org/abs/2310.17303v2
- Date: Mon, 10 Jun 2024 11:46:34 GMT
- Title: Demonstration-Regularized RL
- Authors: Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Menard,
- Abstract summary: Using expert demonstrations, we identify an optimal policy at a sample complexity of order $widetildeO(mathrmPoly(S,A,H)/(varepsilon2 NmathrmE)$ in finite and $widetildeO(mathrmPoly(d,H)/(varepsilon2 NmathrmE)$ in linear Markov decision processes.
We establish that demonstration-regularized methods are provably efficient for reinforcement learning from human feedback.
- Score: 39.96273388393764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorporating expert demonstrations has empirically helped to improve the sample efficiency of reinforcement learning (RL). This paper quantifies theoretically to what extent this extra information reduces RL's sample complexity. In particular, we study the demonstration-regularized reinforcement learning that leverages the expert demonstrations by KL-regularization for a policy learned by behavior cloning. Our findings reveal that using $N^{\mathrm{E}}$ expert demonstrations enables the identification of an optimal policy at a sample complexity of order $\widetilde{O}(\mathrm{Poly}(S,A,H)/(\varepsilon^2 N^{\mathrm{E}}))$ in finite and $\widetilde{O}(\mathrm{Poly}(d,H)/(\varepsilon^2 N^{\mathrm{E}}))$ in linear Markov decision processes, where $\varepsilon$ is the target precision, $H$ the horizon, $A$ the number of action, $S$ the number of states in the finite case and $d$ the dimension of the feature space in the linear case. As a by-product, we provide tight convergence guarantees for the behaviour cloning procedure under general assumptions on the policy classes. Additionally, we establish that demonstration-regularized methods are provably efficient for reinforcement learning from human feedback (RLHF). In this respect, we provide theoretical evidence showing the benefits of KL-regularization for RLHF in tabular and linear MDPs. Interestingly, we avoid pessimism injection by employing computationally feasible regularization to handle reward estimation uncertainty, thus setting our approach apart from the prior works.
Related papers
- Uncertainty-Aware Reward-Free Exploration with General Function Approximation [69.27868448449755]
In this paper, we propose a reward-free reinforcement learning algorithm called alg.
The key idea behind our algorithm is an uncertainty-aware intrinsic reward for exploring the environment.
Experiment results show that GFA-RFE outperforms or is comparable to the performance of state-of-the-art unsupervised RL algorithms.
arXiv Detail & Related papers (2024-06-24T01:37:18Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Provably Robust Temporal Difference Learning for Heavy-Tailed Rewards [27.209606183563853]
We establish that temporal difference (TD) learning with a dynamic gradient clipping mechanism can be provably robustified against heavy-tailed reward distributions.
We show that a robust variant of NAC based on TD learning achieves $tildemathcalO(varepsilon-frac1p)$ sample complexity.
arXiv Detail & Related papers (2023-06-20T11:12:21Z) - Reinforcement Learning with General Utilities: Simpler Variance
Reduction and Large State-Action Space [17.366915676628867]
We consider the reinforcement learning problem with general utilities.
Our algorithm achieves $tildemathcalO(epsilon-3)$ and $tildemathcalO(epsilon-2)$ sample complexities.
arXiv Detail & Related papers (2023-06-02T18:16:35Z) - Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo [104.9535542833054]
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL)
We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo.
Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
arXiv Detail & Related papers (2023-05-29T17:11:28Z) - A Few Expert Queries Suffices for Sample-Efficient RL with Resets and
Linear Value Approximation [16.29514743112387]
We study sample-efficient Reinforcement Learning (RL) in settings where only the optimal value function is assumed to be linearlyrealizable.
We present a statistically and computationally efficient algorithm (Delphi) for blending exploration with expert queries.
Delphi requires $tildemathcalO(d)$ expert queries and a $textttpoly(d,|mathcalA|,1/varepsilon)$ amount of exploratory samples to provably recover an $varepsilon$suboptimal policy.
arXiv Detail & Related papers (2022-07-18T01:39:13Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
We propose a novel offline reinforcement learning algorithm called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
PARTED decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value based on the learned proxy reward.
To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward.
arXiv Detail & Related papers (2022-06-13T19:11:22Z) - Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov
Decision Processes [61.11090361892306]
Reward-free reinforcement learning (RL) considers the setting where the agent does not have access to a reward function during exploration.
We show that this separation does not exist in the setting of linear MDPs.
We develop a computationally efficient algorithm for reward-free RL in a $d$-dimensional linear MDP.
arXiv Detail & Related papers (2022-01-26T22:09:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.