論文の概要: CADS: Unleashing the Diversity of Diffusion Models through
Condition-Annealed Sampling
- arxiv url: http://arxiv.org/abs/2310.17347v1
- Date: Thu, 26 Oct 2023 12:27:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 20:41:43.709167
- Title: CADS: Unleashing the Diversity of Diffusion Models through
Condition-Annealed Sampling
- Title(参考訳): CADS: 条件付きサンプリングによる拡散モデルの多様性の解放
- Authors: Seyedmorteza Sadat, Jakob Buhmann, Derek Bradely, Otmar Hilliges,
Romann M. Weber
- Abstract要約: Condition-Annealed Diffusion Sampler (CADS) は任意の事前学習モデルとサンプリングアルゴリズムで使用することができる。
本研究では,様々な条件生成タスクにおける拡散モデルの多様性を向上することを示す。
- 参考スコア(独自算出の注目度): 25.301443993960277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While conditional diffusion models are known to have good coverage of the
data distribution, they still face limitations in output diversity,
particularly when sampled with a high classifier-free guidance scale for
optimal image quality or when trained on small datasets. We attribute this
problem to the role of the conditioning signal in inference and offer an
improved sampling strategy for diffusion models that can increase generation
diversity, especially at high guidance scales, with minimal loss of sample
quality. Our sampling strategy anneals the conditioning signal by adding
scheduled, monotonically decreasing Gaussian noise to the conditioning vector
during inference to balance diversity and condition alignment. Our
Condition-Annealed Diffusion Sampler (CADS) can be used with any pretrained
model and sampling algorithm, and we show that it boosts the diversity of
diffusion models in various conditional generation tasks. Further, using an
existing pretrained diffusion model, CADS achieves a new state-of-the-art FID
of 1.70 and 2.31 for class-conditional ImageNet generation at 256$\times$256
and 512$\times$512 respectively.
- Abstract(参考訳): 条件付き拡散モデルは、データ分布をよくカバーしていることが知られているが、特に最適な画像品質のための分類なしガイダンス尺度や、小さなデータセットで訓練された場合、出力の多様性の制限に直面している。
この問題を推論における条件づけ信号の役割と位置づけ、特に高誘導スケールにおいて、サンプル品質の損失を最小限に抑えながら、生成の多様性を高める拡散モデルのためのサンプリング戦略の改善を提供する。
提案手法は, 推定中にガウス雑音を条件付けベクトルに単調に減少させ, ダイバーシティと条件アライメントのバランスをとることにより, 条件付け信号をアニールする。
条件付き拡散サンプリング(CADS)は,任意の事前学習モデルとサンプリングアルゴリズムで使用することができ,様々な条件生成タスクにおける拡散モデルの多様性を高めることを示す。
さらに、既存の事前訓練拡散モデルを用いて、CADSは256$\times$256と512$\times$512のクラス条件の画像ネット生成に対して、1.70と2.31の最先端FIDをそれぞれ達成している。
関連論文リスト
- Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
論文 参考訳(メタデータ) (2023-06-02T20:09:57Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
拡散モデルのランダム性は非効率性と不安定性をもたらすため、SR結果の品質を保証することは困難である。
本稿では,一連の拡散型SR手法の恩恵を受ける可能性を持つプラグアンドプレイサンプリング手法を提案する。
提案手法によりサンプリングされたSR結果の質は, 学習前の拡散ベースSRモデルと同一のランダム性を有する現在の手法でサンプリングされた結果の質より優れる。
論文 参考訳(メタデータ) (2023-05-24T17:09:54Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
GAN(Generative Adversarial Network)を用いたクラス条件画像生成について,様々な手法を用いて検討した。
本稿では,DuDGANと呼ばれる2次元拡散型ノイズ注入法を取り入れたGANを用いたクラス条件画像生成手法を提案する。
提案手法は,画像生成のための現状条件付きGANモデルよりも性能的に優れている。
論文 参考訳(メタデータ) (2023-05-24T07:59:44Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
拡散モデルの高速サンプリング法であるMDD-DDMを提案する。
我々のアプローチは、学習した分布を所定の予算のタイムステップで微調整するために、最大平均離散性(MMD)を使用するという考え方に基づいている。
提案手法は,広範に普及した拡散モデルで要求されるわずかな時間で高品質なサンプルを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-01-19T09:48:07Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
そこで本研究では,分類器を含まない誘導拡散モデルから抽出し易いモデルへ抽出する手法を提案する。
画素空間上で訓練された標準拡散モデルに対して,本手法は元のモデルに匹敵する画像を生成することができる。
遅延空間で訓練された拡散モデル(例えば、安定拡散)に対して、我々の手法は1から4段階のデノナイジングステップで高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T18:03:56Z) - Learning Fast Samplers for Diffusion Models by Differentiating Through
Sample Quality [44.37533757879762]
差分拡散サンプリングサーチ(DDSS)は,任意の事前学習拡散モデルに対して高速サンプリングを最適化する手法である。
また、拡散モデルのためのフレキシブルな非マルコフ型サンプルモデルのファミリーである一般化ガウス拡散モデル(GGDM)を提示する。
本手法は, 微調整や再学習の必要なく, 事前学習した拡散モデルと互換性がある。
論文 参考訳(メタデータ) (2022-02-11T18:53:18Z) - Cascaded Diffusion Models for High Fidelity Image Generation [53.57766722279425]
本研究では,画像ネット生成の課題に対して,カスケード拡散モデルを用いて高忠実度画像を生成可能であることを示す。
カスケード拡散モデルは、解像度が増大する画像を生成する複数の拡散モデルのパイプラインを含む。
その結果,カスケードパイプラインのサンプル品質は,条件付拡張に大きく依存していることがわかった。
論文 参考訳(メタデータ) (2021-05-30T17:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。