Likelihood-based Out-of-Distribution Detection with Denoising Diffusion
Probabilistic Models
- URL: http://arxiv.org/abs/2310.17432v1
- Date: Thu, 26 Oct 2023 14:40:30 GMT
- Title: Likelihood-based Out-of-Distribution Detection with Denoising Diffusion
Probabilistic Models
- Authors: Joseph Goodier, Neill D.F. Campbell
- Abstract summary: We show that likelihood-based Out-of-Distribution detection can be extended to diffusion models.
We propose a new likelihood ratio for Out-of-Distribution detection with Deep Denoising Diffusion Models.
- Score: 6.554019613111897
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-Distribution detection between dataset pairs has been extensively
explored with generative models. We show that likelihood-based
Out-of-Distribution detection can be extended to diffusion models by leveraging
the fact that they, like other likelihood-based generative models, are
dramatically affected by the input sample complexity. Currently, all
Out-of-Distribution detection methods with Diffusion Models are
reconstruction-based. We propose a new likelihood ratio for Out-of-Distribution
detection with Deep Denoising Diffusion Models, which we call the Complexity
Corrected Likelihood Ratio. Our likelihood ratio is constructed using Evidence
Lower-Bound evaluations from an individual model at various noising levels. We
present results that are comparable to state-of-the-art Out-of-Distribution
detection methods with generative models.
Related papers
- Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Ablation Based Counterfactuals [7.481286710933861]
Ablation Based Counterfactuals (ABC) is a method of performing counterfactual analysis that relies on model ablation rather than model retraining.
We demonstrate how we can construct a model like this using an ensemble of diffusion models.
We then use this model to study the limits of training data attribution by enumerating full counterfactual landscapes.
arXiv Detail & Related papers (2024-06-12T06:22:51Z) - Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand [9.460857822923842]
Causal inference from observational data plays critical role in many applications in trustworthy machine learning.
We show how to sample from any identifiable interventional distribution given an arbitrary causal graph.
We also generate high-dimensional interventional samples from the MIMIC-CXR dataset involving text and image variables.
arXiv Detail & Related papers (2024-02-12T05:48:31Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - Diffusion Random Feature Model [0.0]
We present a diffusion model-inspired deep random feature model that is interpretable.
We derive generalization bounds between the distribution of sampled data and the true distribution using properties of score matching.
We validate our findings by generating samples on the fashion MNIST dataset and instrumental audio data.
arXiv Detail & Related papers (2023-10-06T17:59:05Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance.
We propose a unifying framework generalising this approach to a wide class of spaces and leading to an original extension of score matching.
arXiv Detail & Related papers (2022-11-07T14:34:27Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.