Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand
- URL: http://arxiv.org/abs/2402.07419v2
- Date: Thu, 31 Oct 2024 12:16:44 GMT
- Title: Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand
- Authors: Md Musfiqur Rahman, Matt Jordan, Murat Kocaoglu,
- Abstract summary: Causal inference from observational data plays critical role in many applications in trustworthy machine learning.
We show how to sample from any identifiable interventional distribution given an arbitrary causal graph.
We also generate high-dimensional interventional samples from the MIMIC-CXR dataset involving text and image variables.
- Score: 9.460857822923842
- License:
- Abstract: Causal inference from observational data plays critical role in many applications in trustworthy machine learning. While sound and complete algorithms exist to compute causal effects, many of them assume access to conditional likelihoods, which is difficult to estimate for high-dimensional (particularly image) data. Researchers have alleviated this issue by simulating causal relations with neural models. However, when we have high-dimensional variables in the causal graph along with some unobserved confounders, no existing work can effectively sample from the un/conditional interventional distributions. In this work, we show how to sample from any identifiable interventional distribution given an arbitrary causal graph through a sequence of push-forward computations of conditional generative models, such as diffusion models. Our proposed algorithm follows the recursive steps of the existing likelihood-based identification algorithms to train a set of feed-forward models, and connect them in a specific way to sample from the desired distribution. We conduct experiments on a Colored MNIST dataset having both the treatment ($X$) and the target variables ($Y$) as images and sample from $P(y|do(x))$. Our algorithm also enables us to conduct a causal analysis to evaluate spurious correlations among input features of generative models pre-trained on the CelebA dataset. Finally, we generate high-dimensional interventional samples from the MIMIC-CXR dataset involving text and image variables.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Diffusion Random Feature Model [0.0]
We present a diffusion model-inspired deep random feature model that is interpretable.
We derive generalization bounds between the distribution of sampled data and the true distribution using properties of score matching.
We validate our findings by generating samples on the fashion MNIST dataset and instrumental audio data.
arXiv Detail & Related papers (2023-10-06T17:59:05Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
We propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models.
We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data.
arXiv Detail & Related papers (2022-02-21T12:23:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
This paper presents a normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM) to harmonize medical data.
We evaluate on multiple, large, real-world medical datasets to observe that this method leads to better cross-domain generalization compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-12T19:57:35Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Information-Theoretic Approximation to Causal Models [0.0]
We show that it is possible to solve the problem of inferring the causal direction and causal effect between two random variables from a finite sample.
We embed distributions that originate from samples of X and Y into a higher dimensional probability space.
We show that this information-theoretic approximation to causal models (IACM) can be done by solving a linear optimization problem.
arXiv Detail & Related papers (2020-07-29T18:34:58Z) - A Causal Direction Test for Heterogeneous Populations [10.653162005300608]
Most causal models assume a single homogeneous population, an assumption that may fail to hold in many applications.
We show that when the homogeneity assumption is violated, causal models developed based on such assumption can fail to identify the correct causal direction.
We propose an adjustment to a commonly used causal direction test statistic by using a $k$-means type clustering algorithm.
arXiv Detail & Related papers (2020-06-08T18:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.