Intermodal quantum key distribution field trial with active switching between fiber and free-space channels
- URL: http://arxiv.org/abs/2310.17441v3
- Date: Thu, 16 Jan 2025 15:21:01 GMT
- Title: Intermodal quantum key distribution field trial with active switching between fiber and free-space channels
- Authors: Francesco Picciariello, Ilektra Karakosta-Amarantidou, Edoardo Rossi, Marco Avesani, Giulio Foletto, Luca Calderaro, Giuseppe Vallone, Paolo Villoresi, Francesco Vedovato,
- Abstract summary: Intermodal quantum key distribution enables the full interoperability of fiber networks and free-space channels.<n>We present a field trial of an intermodal quantum key distribution system in a simple 3-node heterogeneous quantum network.<n>The switching system represents a cost-effective solution for a trusted quantum key distribution network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intermodal quantum key distribution enables the full interoperability of fiber networks and free-space channels, which are both necessary elements for the development of a global quantum network. We present a field trial of an intermodal quantum key distribution system in a simple 3-node heterogeneous quantum network - comprised of two polarization-based transmitters and a single receiver - in which the active channel is alternately switched between a free-space link of 620 m and a 17km-long deployed fiber in the metropolitan area of Padova. The performance of the free-space channel is evaluated against the atmospheric turbulence strength of the link. The field trial lasted for several hours in daylight conditions, attesting the interoperability between fiber and free-space channels, with a secret key rate of the order of kbps for both the channels. The QKD hardware and software require no different strategies to work over the two channels, even if the intrinsic characteristics of the links are clearly different. The switching system represents a cost-effective solution for a trusted quantum key distribution network, reducing the number of necessary devices in different network topologies.
Related papers
- Free-Space Twin-Field Quantum Key Distribution [25.413253805419494]
We report the first experimental demonstration of free-space TF-QKD over 14.2 km urban atmospheric channels.
We achieve a secret key rate exceeding the repeaterless capacity bound.
This work represents a pivotal advance toward satellite-based global quantum networks.
arXiv Detail & Related papers (2025-03-22T12:05:07Z) - Emulation of satellite up-link quantum communication with entangled photons [75.38606213726906]
We demonstrate an ultra-bright source of far-non-degenerate entangled photons and perform quantum key distribution in emulated high-loss satellite scenarios.
With a loss profile corresponding to that of one of the pioneering Micius up-link experiments, and a terrestrial end user separated by 10km of telecom fibre we achieve secure key accumulation of 5.2kbit in a single overpass in the limit.
arXiv Detail & Related papers (2025-02-05T19:14:55Z) - Increasing the secret key rate of satellite-to-ground entanglement-based QKD assisted by adaptive optics [0.48182159227299687]
Future quantum networks will be composed of both terrestrial links for metropolitan and continent-scale connections and space-based links for global coverage and infrastructure resilience.
The propagation of quantum signals through the atmosphere is severely impacted by the effects of turbulence.
This is even more the case for entanglement-based quantum communication protocols requiring two free-space channels to be considered simultaneously.
We show in particular that this improves the performance of entanglement-based quantum key distribution by up to a few hundred bits per second when compared with the uncorrected scenario.
arXiv Detail & Related papers (2024-11-14T16:16:10Z) - Entanglement manipulation through multicore fibres [41.94295877935867]
We show that multicore fibres can be effectively used for the scope of communication and for the generation of entangled states.
The presence of crosstalk among the cores of the fibre is fundamental for the generation of such states.
arXiv Detail & Related papers (2024-07-05T11:14:24Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Dynamic DV-QKD Networking in Fully-Meshed Software-Defined Optical
Networks [0.3355436702348693]
We demonstrate a four-node trusted-node-free metro network configuration with dynamic discrete-variable quantum key distribution DV-QKD networking capabilities.
Coexistence of a quantum channel and six classical channels through a field-deployed fibre test network is examined.
arXiv Detail & Related papers (2021-08-25T09:46:32Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Flexible entanglement-distribution network with an AlGaAs chip for
secure communications [0.0]
We demonstrate reconfigurable entanglement distribution between up to 8 users in a resource-optimized quantum network topology.
As a benchmark application we use quantum key distribution, and show low error and high secret key generation rates.
Together with the potential of our semiconductor source for distributing secret keys over a 60 nm bandwidth with commercial multiplexing technology, these results offer a promising route to the deployment of scalable quantum network architectures.
arXiv Detail & Related papers (2021-02-09T14:13:07Z) - Coherent phase transfer for real-world twin-field quantum key
distribution [0.0]
We develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss.
Our technique reduces the quantum-bit-error-rate contributed by channel length variations to 1%, representing an effective solution for real-world quantum communications.
arXiv Detail & Related papers (2020-12-30T15:40:07Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z) - Microwave Quantum Link between Superconducting Circuits Housed in
Spatially Separated Cryogenic Systems [43.55994393060723]
We report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters.
We transfer qubit states and generate entanglement on-demand with average transfer and target state fidelities of 85.8 % and 79.5 %, respectively.
arXiv Detail & Related papers (2020-08-04T15:36:51Z) - A Quantum Network Node with Crossed Optical Fibre Cavities [0.0]
We develop a quantum network node that connects to two quantum channels.
It functions as a passive, heralded and high-fidelity quantum memory.
Our node is robust, fits naturally into larger fibre-based networks, can be scaled to more cavities, and thus provides clear perspectives for a quantum internet.
arXiv Detail & Related papers (2020-04-19T12:17:17Z) - Decentralized Learning for Channel Allocation in IoT Networks over
Unlicensed Bandwidth as a Contextual Multi-player Multi-armed Bandit Game [134.88020946767404]
We study a decentralized channel allocation problem in an ad-hoc Internet of Things network underlaying on the spectrum licensed to a primary cellular network.
Our study maps this problem into a contextual multi-player, multi-armed bandit game, and proposes a purely decentralized, three-stage policy learning algorithm through trial-and-error.
arXiv Detail & Related papers (2020-03-30T10:05:35Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.