OTMatch: Improving Semi-Supervised Learning with Optimal Transport
- URL: http://arxiv.org/abs/2310.17455v2
- Date: Thu, 30 May 2024 05:53:23 GMT
- Title: OTMatch: Improving Semi-Supervised Learning with Optimal Transport
- Authors: Zhiquan Tan, Kaipeng Zheng, Weiran Huang,
- Abstract summary: We present a new approach called OTMatch, which leverages semantic relationships among classes by employing an optimal transport loss function to match distributions.
The empirical results show improvements in our method above baseline, this demonstrates the effectiveness and superiority of our approach in harnessing semantic relationships to enhance learning performance in a semi-supervised setting.
- Score: 2.4355694259330467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning has made remarkable strides by effectively utilizing a limited amount of labeled data while capitalizing on the abundant information present in unlabeled data. However, current algorithms often prioritize aligning image predictions with specific classes generated through self-training techniques, thereby neglecting the inherent relationships that exist within these classes. In this paper, we present a new approach called OTMatch, which leverages semantic relationships among classes by employing an optimal transport loss function to match distributions. We conduct experiments on many standard vision and language datasets. The empirical results show improvements in our method above baseline, this demonstrates the effectiveness and superiority of our approach in harnessing semantic relationships to enhance learning performance in a semi-supervised setting.
Related papers
- Class Enhancement Losses with Pseudo Labels for Zero-shot Semantic
Segmentation [40.09476732999614]
Mask proposal models have significantly improved the performance of zero-shot semantic segmentation.
The use of a background' embedding during training in these methods is problematic as the resulting model tends to over-learn and assign all unseen classes as the background class instead of their correct labels.
This paper proposes novel class enhancement losses to bypass the use of the background embbedding during training, and simultaneously exploit the semantic relationship between text embeddings and mask proposals by ranking the similarity scores.
arXiv Detail & Related papers (2023-01-18T06:55:02Z) - Consistency-Based Semi-supervised Evidential Active Learning for
Diagnostic Radiograph Classification [2.3545156585418328]
We introduce a novel Consistency-based Semi-supervised Evidential Active Learning framework (CSEAL)
We leverage predictive uncertainty based on theories of evidence and subjective logic to develop an end-to-end integrated approach.
Our approach can substantially improve accuracy on rarer abnormalities with fewer labelled samples.
arXiv Detail & Related papers (2022-09-05T09:28:31Z) - Demystifying Unsupervised Semantic Correspondence Estimation [13.060538447838303]
We explore semantic correspondence estimation through the lens of unsupervised learning.
We thoroughly evaluate several recently proposed unsupervised methods across multiple challenging datasets.
We introduce a new unsupervised correspondence approach which utilizes the strength of pre-trained features while encouraging better matches during training.
arXiv Detail & Related papers (2022-07-11T17:59:51Z) - Voxel-wise Adversarial Semi-supervised Learning for Medical Image
Segmentation [4.489713477369384]
We introduce a novel adversarial learning-based semi-supervised segmentation method for medical image segmentation.
Our method embeds both local and global features from multiple hidden layers and learns context relations between multiple classes.
Our method outperforms current best-performing state-of-the-art semi-supervised learning approaches on the image segmentation of the left atrium (single class) and multiorgan datasets (multiclass)
arXiv Detail & Related papers (2022-05-14T06:57:19Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Adaptive Affinity Loss and Erroneous Pseudo-Label Refinement for Weakly
Supervised Semantic Segmentation [48.294903659573585]
In this paper, we propose to embed affinity learning of multi-stage approaches in a single-stage model.
A deep neural network is used to deliver comprehensive semantic information in the training phase.
Experiments are conducted on the PASCAL VOC 2012 dataset to evaluate the effectiveness of our proposed approach.
arXiv Detail & Related papers (2021-08-03T07:48:33Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.