Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
- URL: http://arxiv.org/abs/2310.17463v2
- Date: Wed, 3 Apr 2024 14:49:00 GMT
- Title: Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
- Authors: Konstantin Hess, Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel,
- Abstract summary: We propose a novel Bayesian neural controlled differential equation (BNCDE) for treatment effect estimation in continuous time.
Our method is of direct practical value for promoting reliable decision-making in medicine.
- Score: 25.068617118126824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Treatment effect estimation in continuous time is crucial for personalized medicine. However, existing methods for this task are limited to point estimates of the potential outcomes, whereas uncertainty estimates have been ignored. Needless to say, uncertainty quantification is crucial for reliable decision-making in medical applications. To fill this gap, we propose a novel Bayesian neural controlled differential equation (BNCDE) for treatment effect estimation in continuous time. In our BNCDE, the time dimension is modeled through a coupled system of neural controlled differential equations and neural stochastic differential equations, where the neural stochastic differential equations allow for tractable variational Bayesian inference. Thereby, for an assigned sequence of treatments, our BNCDE provides meaningful posterior predictive distributions of the potential outcomes. To the best of our knowledge, ours is the first tailored neural method to provide uncertainty estimates of treatment effects in continuous time. As such, our method is of direct practical value for promoting reliable decision-making in medicine.
Related papers
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments.
Medical practitioners require not only estimating averaged causal quantities, but also understanding the randomness of the treatment effect as a random variable.
This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect.
arXiv Detail & Related papers (2024-11-05T18:14:49Z) - Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series [4.656302602746229]
This paper introduces a novel method integrating counterfactual estimation techniques and uncertainty quantification.
We validate our method using two simulated datasets, one focused on the cardiovascular system and the other on COVID-19.
Our findings indicate that our method has robust performance across different counterfactual estimation baselines.
arXiv Detail & Related papers (2024-10-11T13:56:25Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
Our non-parametric modeling of the response curves relies on radial basis function (RBF)-nets with shared hidden neurons.
Applying our proposed method to MIMIC data, we obtain several interesting findings related to the impact of different treatment strategies on the length of ICU stay and 12-hour SOFA score for sepsis patients who are home-discharged.
arXiv Detail & Related papers (2024-01-29T21:13:01Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
We propose a kernel-based doubly robust causal learning estimator for continuous treatments.
We show that its oracle form is a consistent approximation of the influence function.
We then provide a comprehensive convergence analysis in terms of the mean square error.
arXiv Detail & Related papers (2023-09-22T12:18:53Z) - Improving Image-Based Precision Medicine with Uncertainty-Aware Causal
Models [3.5770353345663053]
We use Bayesian deep learning for estimating the posterior distribution over factual and counterfactual outcomes on several treatments.
We train and evaluate this model to predict future new and enlarging T2 lesion counts on a large, multi-center dataset of MR brain images of patients with multiple sclerosis.
arXiv Detail & Related papers (2023-05-05T20:08:40Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
We propose Counterfactual ODE, a novel method to predict the impact of treatments continuously over time.
We demonstrate over several longitudinal data sets that CF-ODE provides more accurate predictions and more reliable uncertainty estimates than previously available methods.
arXiv Detail & Related papers (2022-02-24T09:50:02Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Estimating Average Treatment Effects via Orthogonal Regularization [18.586616164230566]
Previous methods estimate outcomes based on unconfoundedness but neglect any constraints that unconfoundedness imposes on the outcomes.
We propose a novel regularization framework for estimating average treatment effects that exploits unconfoundedness.
We demonstrate that DONUT outperforms the state-of-the-art substantially.
arXiv Detail & Related papers (2021-01-21T08:05:35Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.