Meta-Reinforcement Learning with Discrete World Models for Adaptive Load Balancing
- URL: http://arxiv.org/abs/2503.08872v1
- Date: Tue, 11 Mar 2025 20:36:49 GMT
- Title: Meta-Reinforcement Learning with Discrete World Models for Adaptive Load Balancing
- Authors: Cameron Redovian,
- Abstract summary: We integrate a meta-reinforcement learning algorithm with the DreamerV3 architecture to improve load balancing in operating systems.<n>This approach enables rapid adaptation to dynamic workloads with minimal retraining, outperforming the Advantage Actor-Critic (A2C) algorithm in standard and adaptive trials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We integrate a meta-reinforcement learning algorithm with the DreamerV3 architecture to improve load balancing in operating systems. This approach enables rapid adaptation to dynamic workloads with minimal retraining, outperforming the Advantage Actor-Critic (A2C) algorithm in standard and adaptive trials. It demonstrates robust resilience to catastrophic forgetting, maintaining high performance under varying workload distributions and sizes. These findings have important implications for optimizing resource management and performance in modern operating systems. By addressing the challenges posed by dynamic and heterogeneous workloads, our approach advances the adaptability and efficiency of reinforcement learning in real-world system management tasks.
Related papers
- LADs: Leveraging LLMs for AI-Driven DevOps [3.240228178267042]
LADs is a principled approach to configuration optimization through in-depth analysis of what optimization works under which conditions.<n>By leveraging Retrieval-Augmented Generation, Few-Shot Learning, Chain-of-Thought, and Feedback-Based Prompt Chaining, LADs generates accurate configurations and learns from deployment failures to iteratively refine system settings.<n>Our findings reveal key insights into the trade-offs between performance, cost, and scalability, helping practitioners determine the right strategies for different deployment scenarios.
arXiv Detail & Related papers (2025-02-28T08:12:08Z) - Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.<n>We introduce novel algorithms for dynamic, instance-level data reweighting.<n>Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - Flow: Modularized Agentic Workflow Automation [53.073598156915615]
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution.<n>However, the effective adjustment of agentic during execution has not been well studied.<n>In this paper, we define an activity-on-vertex (AOV) graph, which allows continuous workflow refinement by agents.<n>Our proposed multi-agent framework achieves efficient concurrent execution of subtasks, effective goal achievement, and enhanced error tolerance.
arXiv Detail & Related papers (2025-01-14T04:35:37Z) - Reward-free World Models for Online Imitation Learning [25.304836126280424]
We propose a novel approach to online imitation learning that leverages reward-free world models.
Our method learns environmental dynamics entirely in latent spaces without reconstruction, enabling efficient and accurate modeling.
We evaluate our method on a diverse set of benchmarks, including DMControl, MyoSuite, and ManiSkill2, demonstrating superior empirical performance compared to existing approaches.
arXiv Detail & Related papers (2024-10-17T23:13:32Z) - A Dynamic Weighting Strategy to Mitigate Worker Node Failure in Distributed Deep Learning [3.0468273116892752]
This paper investigates various optimization techniques in distributed deep learning.
We propose a dynamic weighting strategy to mitigate the problem of straggler nodes due to failure.
arXiv Detail & Related papers (2024-09-14T00:46:51Z) - Dynamic Corrective Self-Distillation for Better Fine-Tuning of
Pretrained Models [0.9217021281095907]
We tackle the issue of aggressive fine-tuning encountered during the process of transfer learning of pre-trained language models (PLMs)
Inspired by the adaptive boosting method in traditional machine learning, we present an effective dynamic corrective self-distillation approach to improve the fine-tuning of the PLMs.
Our technique involves performing a self-distillation mechanism where, at each iteration, the student model actively adapts and corrects itself by dynamically adjusting the weights assigned to individual data points.
arXiv Detail & Related papers (2023-12-12T07:26:36Z) - Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
Models: A Multi-Agent Deep Reinforcement Learning Approach [10.47302625959368]
We present a groundbreaking paradigm integrating Mobile Edge Computing with foundation models, specifically designed to enhance local task performance on user equipment (UE)
Central to our approach is the innovative Emulator-Adapter architecture, segmenting the foundation model into two cohesive modules.
We introduce an advanced resource allocation mechanism that is fine-tuned to the needs of the Emulator-Adapter structure in decentralized settings.
arXiv Detail & Related papers (2023-10-26T15:47:51Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - Distributionally Adaptive Meta Reinforcement Learning [85.17284589483536]
We develop a framework for meta-RL algorithms that behave appropriately under test-time distribution shifts.
Our framework centers on an adaptive approach to distributional robustness that trains a population of meta-policies to be robust to varying levels of distribution shift.
We show how our framework allows for improved regret under distribution shift, and empirically show its efficacy on simulated robotics problems.
arXiv Detail & Related papers (2022-10-06T17:55:09Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.