論文の概要: Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach
- arxiv url: http://arxiv.org/abs/2310.17496v5
- Date: Fri, 5 Apr 2024 00:40:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 20:40:00.649200
- Title: Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach
- Title(参考訳): A/Bテストにおけるデータトレーニングループによる干渉の軽減:重み付きトレーニングアプローチ
- Authors: Nian Si,
- Abstract要約: 重み付けトレーニングと呼ばれる新しいアプローチを導入する。
このアプローチでは、治療データと制御データの両方に現れる各データポイントの確率を予測するために、モデルをトレーニングする必要がある。
本手法は, トレーニング分布の変化を起こさない全ての推定器において, 最小分散を達成できることを実証する。
- 参考スコア(独自算出の注目度): 6.028247638616059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern recommendation systems, the standard pipeline involves training machine learning models on historical data to predict user behaviors and improve recommendations continuously. However, these data training loops can introduce interference in A/B tests, where data generated by control and treatment algorithms, potentially with different distributions, are combined. To address these challenges, we introduce a novel approach called weighted training. This approach entails training a model to predict the probability of each data point appearing in either the treatment or control data and subsequently applying weighted losses during model training. We demonstrate that this approach achieves the least variance among all estimators that do not cause shifts in the training distributions. Through simulation studies, we demonstrate the lower bias and variance of our approach compared to other methods.
- Abstract(参考訳): 現代のレコメンデーションシステムでは、標準的なパイプラインは、履歴データの機械学習モデルをトレーニングし、ユーザの振る舞いを予測し、リコメンデーションを継続的に改善する。
しかし、これらのデータトレーニングループは、制御と処理アルゴリズムによって生成されたデータが、潜在的に異なる分布で結合されたA/Bテストで干渉を起こすことができる。
これらの課題に対処するために、重み付けトレーニングと呼ばれる新しいアプローチを導入する。
このアプローチでは、処理データまたは制御データのいずれかに現れる各データポイントの確率を予測し、モデルトレーニング中に重み付けされた損失を適用するために、モデルをトレーニングする。
本手法は, トレーニング分布の変化を起こさない全ての推定器において, 最小分散を達成できることを実証する。
シミュレーション研究を通じて、他の手法と比較して、アプローチのバイアスと分散の低さを実証する。
関連論文リスト
- Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
オフライントレーニングとオンライン評価段階を含む,データ影響評価のための効率的なフレームワークを提案する。
提案手法は, 直接再学習法と比較して, プロセスの大幅な高速化を図りながら, 同等のモデル行動評価を実現する。
論文 参考訳(メタデータ) (2024-04-22T09:16:14Z) - The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes [30.30769701138665]
我々は、訓練データとテストデータの間の相互影響を浮き彫りにして、ミラーレッド影響仮説を導入し、探求する。
具体的には、テスト予測に対するトレーニングデータの影響を評価することは、等価だが逆問題として再定義することができることを示唆している。
トレーニングポイント毎に前方パスとペアを組むことで,特定のテストサンプルの勾配を計算し,トレーニングデータの影響を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-14T03:43:05Z) - Twice Class Bias Correction for Imbalanced Semi-Supervised Learning [59.90429949214134]
textbfTwice textbfClass textbfBias textbfCorrection (textbfTCBC) と呼ばれる新しいアプローチを導入する。
トレーニング過程におけるモデルパラメータのクラスバイアスを推定する。
非ラベル標本に対してモデルの擬似ラベルに二次補正を適用する。
論文 参考訳(メタデータ) (2023-12-27T15:06:36Z) - A Supervised Contrastive Learning Pretrain-Finetune Approach for Time
Series [15.218841180577135]
本稿では,教師付きコントラスト学習を利用して,事前学習データセット内の特徴を識別する新しい事前学習手法を提案する。
次に、事前学習データセットの学習力学とより密に連携することで、目標データの正確な予測を強化するための微調整手順を提案する。
論文 参考訳(メタデータ) (2023-11-21T02:06:52Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
新たなパラダイムであるテスト時適応は、事前トレーニングされたモデルをテスト中にラベルのないデータに適用し、予測を行う可能性がある。
このパラダイムの最近の進歩は、推論に先立って自己適応モデルのトレーニングにラベルのないデータを活用するという大きな利点を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-03-27T16:32:21Z) - A Data-Centric Approach for Improving Adversarial Training Through the
Lens of Out-of-Distribution Detection [0.4893345190925178]
複雑なアルゴリズムを適用して効果を緩和するのではなく, トレーニング手順から直接ハードサンプルを検出し, 除去することを提案する。
SVHN と CIFAR-10 データセットを用いた結果,計算コストの増大を伴わずに対角訓練の改善に本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-01-25T08:13:50Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
不均衡データは、ディープラーニングに基づく分類モデルに課題をもたらす。
不均衡なデータを扱うための最も広く使われているアプローチの1つは、再重み付けである。
本稿では,分布の観点からの最適輸送(OT)に基づく新しい再重み付け手法を提案する。
論文 参考訳(メタデータ) (2022-08-05T01:23:54Z) - Self Training with Ensemble of Teacher Models [8.257085583227695]
堅牢なディープラーニングモデルのトレーニングには,大量のラベル付きデータが必要である。
このようなラベル付きデータの大規模なリポジトリがなければ、ラベルなしのデータも同様に利用することができる。
準スーパービジョン学習は、そのようなラベルのないデータを分類モデルの訓練に活用することを目的としている。
論文 参考訳(メタデータ) (2021-07-17T09:44:09Z) - Graph Learning with Loss-Guided Training [16.815638149823744]
sc DeepWalkの先駆的なノード埋め込み手法の新たな領域において、損失誘導型トレーニングについて検討する。
データセットの豊富なコレクションに対する実験的な評価は,総合的なトレーニングと総合計算の両面で,ベースライン静的メソッドよりも大幅に加速されたことを示す。
論文 参考訳(メタデータ) (2020-05-31T08:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。