論文の概要: Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion
- arxiv url: http://arxiv.org/abs/2310.17634v1
- Date: Thu, 26 Oct 2023 17:51:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 18:27:14.464843
- Title: Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion
- Title(参考訳): 限界を育む - ロボットロコモーションのための実世界RLによる継続的改善
- Authors: Laura Smith and Yunhao Cao and Sergey Levine
- Abstract要約: 本稿では,ロボットの学習過程における探索を調節するポリシー正規化フレームワークであるAPRLを提案する。
APRLは四足歩行ロボットを、数分で完全に現実世界を歩けるように効率よく学習する。
- 参考スコア(独自算出の注目度): 66.69666636971922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (RL) can enable robots to autonomously acquire
complex behaviors, such as legged locomotion. However, RL in the real world is
complicated by constraints on efficiency, safety, and overall training
stability, which limits its practical applicability. We present APRL, a policy
regularization framework that modulates the robot's exploration over the course
of training, striking a balance between flexible improvement potential and
focused, efficient exploration. APRL enables a quadrupedal robot to efficiently
learn to walk entirely in the real world within minutes and continue to improve
with more training where prior work saturates in performance. We demonstrate
that continued training with APRL results in a policy that is substantially
more capable of navigating challenging situations and is able to adapt to
changes in dynamics with continued training.
- Abstract(参考訳): 深層強化学習(Deep reinforcement learning, RL)は、ロボットが足の移動などの複雑な動作を自律的に取得することを可能にする。
しかし、実世界のRLは、効率、安全性、全体的な訓練安定性の制約により複雑であり、実用性に制限がある。
APRLは、ロボットの訓練過程における探索を調節し、フレキシブルな改善ポテンシャルと集中的で効率的な探索のバランスを崩す政策正規化フレームワークである。
aprlは、四足歩行ロボットが、数分で現実世界を完全に歩けるように効率的に学習し、以前の作業が性能を低下させるようなトレーニングを継続できる。
APRLによる継続的なトレーニングは、挑戦的な状況をナビゲートし、継続的なトレーニングで動的変化に適応できる政策をもたらすことを実証する。
関連論文リスト
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
本稿では,多種多様な操作タスクに対して印象的な性能を示す,ループ内視覚に基づくRLシステムを提案する。
提案手法では,実証と人間の修正,効率的なRLアルゴリズム,その他のシステムレベルの設計選択を統合してポリシを学習する。
提案手法は,再現学習のベースラインと先行RLアプローチを著しく上回り,成功率の平均2倍,実行速度1.8倍に向上した。
論文 参考訳(メタデータ) (2024-10-29T08:12:20Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement
Learning [27.00483962026472]
現実的な四足歩行データセットにおける11のオフライン強化学習アルゴリズムをベンチマークした。
実験の結果,ORLアルゴリズムはモデルフリーのRLに比べて競争性能がよいことがわかった。
提案するベンチマークは,実世界の歩行作業におけるORLアルゴリズムの性能をテスト・評価するための開発プラットフォームとして機能する。
論文 参考訳(メタデータ) (2023-09-13T13:18:29Z) - RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion [16.800984476447624]
本稿では,モデルに基づく最適制御と強化学習を組み合わせた制御フレームワークを提案する。
我々は、一連の実験を通じて、フレームワークの堅牢性と制御性を検証する。
本フレームワークは,多様な次元を持つロボットに対する制御ポリシーのトレーニングを,無力的に支援する。
論文 参考訳(メタデータ) (2023-05-29T01:33:55Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning [141.56016556936865]
この研究は、トルク制御された二足歩行ロボットが実世界で頑丈で多目的なダイナミックジャンプを行えるようにすることで、二足歩行ロボットの機敏さの限界を推し進めることを目的としている。
本稿では,ロボットが様々な場所や方向へジャンプするなど,さまざまなジャンプタスクを達成するための強化学習フレームワークを提案する。
我々は,ロボットの長期入出力(I/O)履歴を符号化し,短期I/O履歴への直接アクセスを可能にする新しいポリシー構造を開発する。
論文 参考訳(メタデータ) (2023-02-19T01:06:09Z) - Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement
Learning [0.8399688944263843]
深層強化学習(DRL)は、環境との相互作用を通じてポリシーを学習することで複雑な制御課題を解決するための有望な手法である。
Sim-to-realアプローチはシミュレーションを利用してDRLポリシーを事前訓練し、現実世界にデプロイする。
本研究では,リアルタイムにDRLエージェントをトレーニングするための分散クラウドエッジアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-03-04T10:27:01Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。