論文の概要: Feature Extraction and Classification from Planetary Science Datasets
enabled by Machine Learning
- arxiv url: http://arxiv.org/abs/2310.17681v1
- Date: Thu, 26 Oct 2023 11:43:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 16:13:12.341337
- Title: Feature Extraction and Classification from Planetary Science Datasets
enabled by Machine Learning
- Title(参考訳): 機械学習による惑星科学データセットの特徴抽出と分類
- Authors: Conor Nixon, Zachary Yahn, Ethan Duncan, Ian Neidel, Alyssa Mills,
Beno\^it Seignovert (OSUNA), Andrew Larsen, Kathryn Gansler, Charles Liles,
Catherine Walker, Douglas Trent, John Santerre
- Abstract要約: 近年の研究では、外惑星ミッションのデータセットに機械学習(ML)ニューラルネットワークを適用し、特徴認識を実現するための2つの事例を示す。
トレーニングデータセットにラベル付きブロックを認識するために,業界標準のMask R-CNNに新しいレイヤを追加し,トレーニングするトランスファーラーニングアプローチを採用しました。
別のアプリケーションでは、Titan上の雲を認識するためにMask R-CNNを適用しました。
- 参考スコア(独自算出の注目度): 0.4091406230302996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present two examples of recent investigations that we have
undertaken, applying Machine Learning (ML) neural networks (NN) to image
datasets from outer planet missions to achieve feature recognition. Our first
investigation was to recognize ice blocks (also known as rafts, plates,
polygons) in the chaos regions of fractured ice on Europa. We used a transfer
learning approach, adding and training new layers to an industry-standard Mask
R-CNN (Region-based Convolutional Neural Network) to recognize labeled blocks
in a training dataset. Subsequently, the updated model was tested against a new
dataset, achieving 68% precision. In a different application, we applied the
Mask R-CNN to recognize clouds on Titan, again through updated training
followed by testing against new data, with a precision of 95% over 369 images.
We evaluate the relative successes of our techniques and suggest how training
and recognition could be further improved. The new approaches we have used for
planetary datasets can further be applied to similar recognition tasks on other
planets, including Earth. For imagery of outer planets in particular, the
technique holds the possibility of greatly reducing the volume of returned
data, via onboard identification of the most interesting image subsets, or by
returning only differential data (images where changes have occurred) greatly
enhancing the information content of the final data stream.
- Abstract(参考訳): 本稿では、外惑星ミッションの画像データセットに機械学習(ml)ニューラルネットワーク(nn)を適用し、特徴認識を実現するという最近の研究の例を2つ紹介する。
最初の調査は、エウロパの砕氷のカオス領域にある氷のブロック(いかだ、プレート、多角形)を認識することでした。
我々はトランスファーラーニングアプローチを採用し、業界標準のMask R-CNN(Region-based Convolutional Neural Network)に新しいレイヤを追加し、トレーニングデータセットでラベル付きブロックを認識する。
その後、更新されたモデルは、68%の精度で新しいデータセットに対してテストされた。
別のアプリケーションでは、Titan上の雲を認識するためにMask R-CNNを適用しました。
我々は,我々の手法の相対的成功を評価し,訓練と認識をさらに改善する方法を提案する。
私たちが惑星のデータセットに用いた新しいアプローチは、地球を含む他の惑星の同様の認識タスクにも適用できます。
特に外惑星の画像の場合、この技術は、最も興味深い画像サブセットのオンボード識別や、最終データストリームの情報量を大幅に増大させる差分データ(変化が起こった画像)のみを返すことによって、返されるデータの量を大幅に減少させる可能性がある。
関連論文リスト
- Semantic segmentation on multi-resolution optical and microwave data using deep learning [0.0]
畳み込みニューラルネットワークに基づく修正U-NetモデルとVGG-UNetモデルにより、衛星画像からオブジェクトを自動的に識別する。
Cartosat 2S (1m空間分解能)データセットが使用された。
ディープラーニングモデルは、95%以上の精度でテストデータセットから構築された形状と船を検出するために実装された。
論文 参考訳(メタデータ) (2024-11-12T06:33:09Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Graph-based Active Learning for Semi-supervised Classification of SAR
Data [8.92985438874948]
本稿では,グラフベース学習法とニューラルネットワーク法を組み合わせた合成開口レーダ(SAR)データの分類手法を提案する。
CNNVAEの機能埋め込みとグラフ構築はラベル付きデータを必要としないため、オーバーフィッティングが軽減される。
この方法は、データラベリングプロセスにおいて、アクティブラーニングのためのヒューマン・イン・ザ・ループを容易に組み込む。
論文 参考訳(メタデータ) (2022-03-31T00:14:06Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
我々は,対象地域を排除し,事前訓練の手順を改善する,新たな自己指導型アプローチを開発した。
予測モデルに対してエージェントを訓練することで、下流の分類タスクで抽出した意味的特徴を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:05:06Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
本稿では,一方の畳み込みネットワーク(cnn)から他方へ,スパース表現を用いて中間知識を伝達するスパース表現マッチング(srm)を提案する。
勾配降下を利用して効率的に最適化し、任意のCNNにプラグアンドプレイで統合できるニューラルプロセッシングブロックとして定式化します。
実験の結果,教師と生徒のネットワーク間のアーキテクチャの違いに頑健であり,複数のデータセットにまたがる他のkd技術よりも優れていた。
論文 参考訳(メタデータ) (2021-03-31T11:47:47Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Learning Visual Representations for Transfer Learning by Suppressing
Texture [38.901410057407766]
自己教師付き学習では、低レベルのキューとしてのテクスチャは、ネットワークがより高いレベルの表現を学習することを防ぐショートカットを提供する。
本稿では,異方性拡散に基づく古典的手法を用いて,テクスチャを抑圧した画像を用いた強化訓練を提案する。
提案手法は,物体検出と画像分類における最先端の成果を実証的に示す。
論文 参考訳(メタデータ) (2020-11-03T18:27:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。