論文の概要: Semantic segmentation on multi-resolution optical and microwave data using deep learning
- arxiv url: http://arxiv.org/abs/2411.07581v1
- Date: Tue, 12 Nov 2024 06:33:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:20:34.042690
- Title: Semantic segmentation on multi-resolution optical and microwave data using deep learning
- Title(参考訳): 深層学習を用いた多分解能光・マイクロ波データのセマンティックセグメンテーション
- Authors: Jai G Singla, Bakul Vaghela,
- Abstract要約: 畳み込みニューラルネットワークに基づく修正U-NetモデルとVGG-UNetモデルにより、衛星画像からオブジェクトを自動的に識別する。
Cartosat 2S (1m空間分解能)データセットが使用された。
ディープラーニングモデルは、95%以上の精度でテストデータセットから構築された形状と船を検出するために実装された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Presently, deep learning and convolutional neural networks (CNNs) are widely used in the fields of image processing, image classification, object identification and many more. In this work, we implemented convolutional neural network based modified U-Net model and VGG-UNet model to automatically identify objects from satellite imagery captured using high resolution Indian remote sensing satellites and then to pixel wise classify satellite data into various classes. In this paper, Cartosat 2S (~1m spatial resolution) datasets were used and deep learning models were implemented to detect building shapes and ships from the test datasets with an accuracy of more than 95%. In another experiment, microwave data (varied resolution) from RISAT-1 was taken as an input and ships and trees were detected with an accuracy of >96% from these datasets. For the classification of images into multiple-classes, deep learning model was trained on multispectral Cartosat images. Model generated results were then tested using ground truth. Multi-label classification results were obtained with an accuracy (IoU) of better than 95%. Total six different problems were attempted using deep learning models and IoU accuracies in the range of 85% to 98% were achieved depending on the degree of complexity.
- Abstract(参考訳): 現在、ディープラーニングと畳み込みニューラルネットワーク(CNN)は、画像処理、画像分類、物体識別などの分野で広く使われている。
本研究では、畳み込みニューラルネットワークに基づく修正U-NetモデルとVGG-UNetモデルを実装し、高解像度インドリモートセンシング衛星を用いて捉えた衛星画像からオブジェクトを自動的に識別し、衛星データを様々なクラスに分類する。
本稿では,Cartosat 2S(約1m空間分解能)データセットを用い,95%以上の精度で実験データセットから形状や船体を検出する深層学習モデルを構築した。
別の実験では、RISAT-1からのマイクロ波データ(希釈分解能)を入力とし、これらのデータセットから96%の精度で船や木が検出された。
画像を複数のクラスに分類するために,多スペクトルカルトサット画像に基づいて深層学習モデルを訓練した。
モデルが生成した結果は、その後、地上の真実を用いてテストされた。
マルチラベル分類の結果は95%以上の精度(IoU)で得られた。
ディープラーニングモデルとIoUアキュラシーを85%から98%の範囲で用いた合計6つの異なる問題を、複雑さの程度によって達成した。
関連論文リスト
- Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - Feature Extraction and Classification from Planetary Science Datasets
enabled by Machine Learning [0.4091406230302996]
近年の研究では、外惑星ミッションのデータセットに機械学習(ML)ニューラルネットワークを適用し、特徴認識を実現するための2つの事例を示す。
トレーニングデータセットにラベル付きブロックを認識するために,業界標準のMask R-CNNに新しいレイヤを追加し,トレーニングするトランスファーラーニングアプローチを採用しました。
別のアプリケーションでは、Titan上の雲を認識するためにMask R-CNNを適用しました。
論文 参考訳(メタデータ) (2023-10-26T11:43:55Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - EEG-based Image Feature Extraction for Visual Classification using Deep
Learning [0.0]
深層学習モデルを用いた脳波のより微妙な理解を容易にするため,脳波信号を画像として効率的に符号化する方法を開発した。
脳波と組み合わせた画像分類法は,純粋な深層学習法に比べて精度が82%向上した。
論文 参考訳(メタデータ) (2022-09-27T00:50:56Z) - Terrain Classification using Transfer Learning on Hyperspectral Images:
A Comparative study [0.13999481573773068]
畳み込みニューラルネットワーク(CNN)とMulti-Layer Perceptron(MLP)は画像分類の有効な方法であることが証明されている。
しかし、彼らは長いトレーニング時間と大量のラベル付きデータの要求の問題に悩まされている。
本稿では,移動学習法を用いてトレーニング時間を短縮し,大規模ラベル付きデータセットへの依存を減らすことを提案する。
論文 参考訳(メタデータ) (2022-06-19T14:36:33Z) - Classification of EEG Motor Imagery Using Deep Learning for
Brain-Computer Interface Systems [79.58173794910631]
トレーニングされたT1クラス畳み込みニューラルネットワーク(CNN)モデルを使用して、運動画像の識別を成功させる能力を調べる。
理論的には、モデルが正確にトレーニングされた場合、クラスを特定し、それに従ってラベル付けすることが可能になる。
CNNモデルは復元され、より小さなサンプルデータを使用して同じ種類の運動画像データを特定するために使用される。
論文 参考訳(メタデータ) (2022-05-31T17:09:46Z) - A Framework for Fast Scalable BNN Inference using Googlenet and Transfer
Learning [0.0]
本論文は、リアルタイム性能の良い物体検出の高精度化を目指します。
バイナライズニューラルネットワークは、画像分類、オブジェクト検出、セマンティックセグメンテーションなど、さまざまな視覚タスクで高いパフォーマンスを発揮しています。
その結果,移動学習法により検出された物体の精度は,既存手法と比較して高いことがわかった。
論文 参考訳(メタデータ) (2021-01-04T06:16:52Z) - Concurrent Segmentation and Object Detection CNNs for Aircraft Detection
and Identification in Satellite Images [0.0]
本稿では,2つの全く異なる畳み込みニューラルネットワーク(CNN)を組み合わせて航空機を検出・識別する専用手法を提案する。
その結果, この組み合わせは各ユニタリモデルよりも有意に優れ, 偽陰性率を大幅に低下させることがわかった。
論文 参考訳(メタデータ) (2020-05-27T07:35:55Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。