論文の概要: A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication
- arxiv url: http://arxiv.org/abs/2310.17705v3
- Date: Fri, 08 Nov 2024 13:31:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:52:47.206947
- Title: A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication
- Title(参考訳): セマンティック通信を利用した無線AI生成コンテンツ(AIGC)プロビジョニングフレームワーク
- Authors: Runze Cheng, Yao Sun, Dusit Niyato, Lan Zhang, Lei Zhang, Muhammad Ali Imran,
- Abstract要約: 本稿では,セマンティック通信(SemCom)を利用したAIGC(SemAIGC)の生成と伝送フレームワークを提案する。
具体的には、セマンティックエンコーダとデコーダに拡散モデルを統合し、ワークロード調整可能なトランシーバを設計する。
提案するSemAIGCフレームワークは,従来の手法に比べてレイテンシとコンテンツ品質が優れていることがシミュレーションによって検証された。
- 参考スコア(独自算出の注目度): 53.78269720999609
- License:
- Abstract: With the significant advances in AI-generated content (AIGC) and the proliferation of mobile devices, providing high-quality AIGC services via wireless networks is becoming the future direction. However, the primary challenges of AIGC services provisioning in wireless networks lie in unstable channels, limited bandwidth resources, and unevenly distributed computational resources. To this end, this paper proposes a semantic communication (SemCom)-empowered AIGC (SemAIGC) generation and transmission framework, where only semantic information of the content rather than all the binary bits should be generated and transmitted by using SemCom. Specifically, SemAIGC integrates diffusion models within the semantic encoder and decoder to design a workload-adjustable transceiver thereby allowing adjustment of computational resource utilization in edge and local. In addition, a Resource-aware wOrklOad Trade-off (ROOT) scheme is devised to intelligently make workload adaptation decisions for the transceiver, thus efficiently generating, transmitting, and fine-tuning content as per dynamic wireless channel conditions and service requirements. Simulations verify the superiority of our proposed SemAIGC framework in terms of latency and content quality compared to conventional approaches.
- Abstract(参考訳): AI生成コンテンツ(AIGC)の大幅な進歩とモバイルデバイスの普及により、ワイヤレスネットワークを介して高品質なAIGCサービスを提供することが、将来的な方向性になりつつある。
しかし、無線ネットワークにおけるAIGCサービスのプロビジョニングの主な課題は、不安定なチャネル、限られた帯域幅リソース、不均一な分散計算リソースにある。
そこで本研究では,セムコムを用いたセマンティック通信(セムコム)によるAIGC(セムAIGC)生成と伝送フレームワークを提案する。
具体的には、セマンティックエンコーダとデコーダに拡散モデルを統合することで、ワークロード調整可能なトランシーバを設計し、エッジおよびローカルでの計算資源利用の調整を可能にする。
さらに、リソースを意識したwOrklOad Trade-off(ROOT)スキームを考案し、トランスシーバの負荷適応決定をインテリジェントに行い、動的無線チャンネル条件やサービス要件に応じたコンテンツを生成し、送信し、微調整する。
提案するSemAIGCフレームワークは,従来の手法に比べてレイテンシとコンテンツ品質が優れていることがシミュレーションによって検証された。
関連論文リスト
- Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
モバイルAIGCサービスアロケーションのための分散インセンティブ機構を提案する。
我々は、AIGCサービスのRSUへの供給と、IoVコンテキスト内のサービスに対するユーザ要求のバランスを見つけるために、マルチエージェントの深層強化学習を採用している。
論文 参考訳(メタデータ) (2024-03-29T12:46:07Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
本稿では, 逆拡散段階における拡散モデルのオフロード決定, 計算時間, 拡散ステップに対する共同最適化アルゴリズムを提案する。
実験結果から,提案アルゴリズムはベースラインよりも優れた継手最適化性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-11T08:36:27Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
本稿では,意味的量子化効率(SQE)や伝送遅延などのセマンティック通信ネットワークにおけるサービス品質について検討する。
全体として有効なSC-QoSを最大化する問題は、基地局、ビット意味表現、サブチャネル割り当て、およびセマンティックリソース割り当てを共同で送信することで定式化される。
本設計では, セマンティックノイズに効果的に対処でき, 無線通信において, 複数のベンチマーク方式と比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2023-12-02T09:12:12Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
本稿では,多モデルプロンプトを用いたGAI支援型SemComシステムを提案する。
セキュリティ上の懸念に応えて、フレンドリーなジャマーによって支援される隠蔽通信の応用を紹介する。
論文 参考訳(メタデータ) (2023-09-05T23:24:56Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
エッジ人工知能(AI)は、従来のクラウドをネットワークエッジまで高速に計算するために提案されている。
近年,特定のエッジAIタスクに対する無線センシング,計算,通信(SC$2$)の収束が,パラダイムシフトを引き起こしている。
超信頼性で低レイテンシなエッジインテリジェンス獲得を実現するために、完全に統合されたセンシング、計算、通信(I SCC)を進めることが最重要である。
論文 参考訳(メタデータ) (2023-06-11T06:40:51Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。