論文の概要: A semantic communication-based workload-adjustable transceiver for wireless AI-generated content (AIGC) delivery
- arxiv url: http://arxiv.org/abs/2503.18874v1
- Date: Mon, 24 Mar 2025 16:49:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:47.558006
- Title: A semantic communication-based workload-adjustable transceiver for wireless AI-generated content (AIGC) delivery
- Title(参考訳): セマンティックコミュニケーションに基づくAIGC配信のための作業負荷調整型トランシーバ
- Authors: Runze Cheng, Yao Sun, Lan Zhang, Lei Feng, Lei Zhang, Muhammad Ali Imran,
- Abstract要約: 動的無線ネットワークにおけるAIGC配信のためのリソース対応wOrkload-adjUstable TransceivEr(ROUTE)を提案する。
具体的には、通信リソースのボトルネックを緩和するために、SemComを使用して生成されたコンテンツのセマンティック情報を優先順位付けする。
- 参考スコア(独自算出の注目度): 18.321324259528264
- License:
- Abstract: With the significant advances in generative AI (GAI) and the proliferation of mobile devices, providing high-quality AI-generated content (AIGC) services via wireless networks is becoming the future direction. However, the primary challenges of AIGC service delivery in wireless networks lie in unstable channels, limited bandwidth resources, and unevenly distributed computational resources. In this paper, we employ semantic communication (SemCom) in diffusion-based GAI models to propose a Resource-aware wOrkload-adjUstable TransceivEr (ROUTE) for AIGC delivery in dynamic wireless networks. Specifically, to relieve the communication resource bottleneck, SemCom is utilized to prioritize semantic information of the generated content. Then, to improve computational resource utilization in both edge and local and reduce AIGC semantic distortion in transmission, modified diffusion-based models are applied to adjust the computing workload and semantic density in cooperative content generation. Simulations verify the superiority of our proposed ROUTE in terms of latency and content quality compared to conventional AIGC approaches.
- Abstract(参考訳): 生成型AI(GAI)とモバイルデバイスの普及により、ワイヤレスネットワークによる高品質なAI生成コンテンツ(AIGC)サービスの提供が、将来的な方向に向かっている。
しかし、無線ネットワークにおけるAIGCサービス配信の主な課題は、不安定なチャネル、限られた帯域幅リソース、不均一な分散計算リソースにある。
本稿では,拡散型GAIモデルにおけるセマンティック通信(SemCom)を用いて,動的無線ネットワークにおけるAIGC配信のためのリソース対応wOrkload-adjUstable TransceivEr(ROUTE)を提案する。
具体的には、通信リソースのボトルネックを緩和するために、SemComを使用して生成されたコンテンツのセマンティック情報を優先順位付けする。
そして、エッジとローカルの両方での計算資源利用を改善し、送信時のAIGC意味歪みを低減するために、修正拡散モデルを適用し、協調コンテンツ生成における計算負荷と意味密度を調整する。
シミュレーションにより,従来のAIGC手法と比較して,レイテンシとコンテンツ品質の面で提案したROUTEの優位性を検証した。
関連論文リスト
- Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Latency-Aware Generative Semantic Communications with Pre-Trained Diffusion Models [43.27015039765803]
我々は,事前学習した生成モデルを用いた遅延認識型セマンティックコミュニケーションフレームワークを開発した。
我々は,超低レート,低レイテンシ,チャネル適応型セマンティック通信を実証する。
論文 参考訳(メタデータ) (2024-03-25T23:04:09Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
本稿では, 逆拡散段階における拡散モデルのオフロード決定, 計算時間, 拡散ステップに対する共同最適化アルゴリズムを提案する。
実験結果から,提案アルゴリズムはベースラインよりも優れた継手最適化性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-11T08:36:27Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
本稿では,意味的量子化効率(SQE)や伝送遅延などのセマンティック通信ネットワークにおけるサービス品質について検討する。
全体として有効なSC-QoSを最大化する問題は、基地局、ビット意味表現、サブチャネル割り当て、およびセマンティックリソース割り当てを共同で送信することで定式化される。
本設計では, セマンティックノイズに効果的に対処でき, 無線通信において, 複数のベンチマーク方式と比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2023-12-02T09:12:12Z) - A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication [53.78269720999609]
本稿では,セマンティック通信(SemCom)を利用したAIGC(SemAIGC)の生成と伝送フレームワークを提案する。
具体的には、セマンティックエンコーダとデコーダに拡散モデルを統合し、ワークロード調整可能なトランシーバを設計する。
提案するSemAIGCフレームワークは,従来の手法に比べてレイテンシとコンテンツ品質が優れていることがシミュレーションによって検証された。
論文 参考訳(メタデータ) (2023-10-26T18:05:22Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
本稿では,多モデルプロンプトを用いたGAI支援型SemComシステムを提案する。
セキュリティ上の懸念に応えて、フレンドリーなジャマーによって支援される隠蔽通信の応用を紹介する。
論文 参考訳(メタデータ) (2023-09-05T23:24:56Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。