OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User
- URL: http://arxiv.org/abs/2310.17748v3
- Date: Sun, 24 Nov 2024 21:55:00 GMT
- Title: OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User
- Authors: Sarah Alnegheimish, Laure Berti-Equille, Kalyan Veeramachaneni,
- Abstract summary: OrionBench is a continuous benchmarking framework for unsupervised time series anomaly detection models.
We show how to use OrionBench, and the performance of pipelines across 17 releases published over the course of four years.
- Score: 8.05635934199494
- License:
- Abstract: Time series anomaly detection is a vital task in many domains, including patient monitoring in healthcare, forecasting in finance, and predictive maintenance in energy industries. This has led to a proliferation of anomaly detection methods, including deep learning-based methods. Benchmarks are essential for comparing the performances of these models as they emerge, in a fair, rigorous, and reproducible approach. Although several benchmarks for comparing models have been proposed, these usually rely on a one-time execution over a limited set of datasets, with comparisons restricted to a few models. We propose OrionBench: an end-user centric, continuously maintained benchmarking framework for unsupervised time series anomaly detection models. Our framework provides universal abstractions to represent models, hyperparameter standardization, extensibility to add new pipelines and datasets, pipeline verification, and frequent releases with published updates of the benchmark. We demonstrate how to use OrionBench, and the performance of pipelines across 17 releases published over the course of four years. We also walk through two real scenarios we experienced with OrionBench that highlight the importance of continuous benchmarking for unsupervised time series anomaly detection.
Related papers
- Retrieval-Augmented Diffusion Models for Time Series Forecasting [19.251274915003265]
We propose a Retrieval- Augmented Time series Diffusion model (RATD)
RATD consists of two parts: an embedding-based retrieval process and a reference-guided diffusion model.
Our approach allows leveraging meaningful samples within the database to aid in sampling, thus maximizing the utilization of datasets.
arXiv Detail & Related papers (2024-10-24T13:14:39Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - TimeSeriesBench: An Industrial-Grade Benchmark for Time Series Anomaly Detection Models [21.658019069964755]
Time series anomaly detection (TSAD) has gained significant attention due to its real-world applications.
There is no effective way to verify whether TSAD can meet the requirements for real-world deployment.
We propose an industrial-grade benchmark TimeSeriesBench to assess the performance of existing algorithms.
arXiv Detail & Related papers (2024-02-16T16:25:20Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Anomaly Detection at Scale: The Case for Deep Distributional Time Series
Models [14.621700495712647]
Main novelty in our approach is that instead of modeling time series consisting of real values or vectors of real values, we model time series of probability distributions over real values (or vectors)
Our method is amenable to streaming anomaly detection and scales to monitoring for anomalies on millions of time series.
We show that we outperform popular open-source anomaly detection tools by up to 17% average improvement for a real-world data set.
arXiv Detail & Related papers (2020-07-30T15:48:55Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.