論文の概要: Data-Centric Financial Large Language Models
- arxiv url: http://arxiv.org/abs/2310.17784v2
- Date: Tue, 14 Nov 2023 02:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 17:45:42.279352
- Title: Data-Centric Financial Large Language Models
- Title(参考訳): データ中心型金融大言語モデル
- Authors: Zhixuan Chu, Huaiyu Guo, Xinyuan Zhou, Yijia Wang, Fei Yu, Hong Chen,
Wanqing Xu, Xin Lu, Qing Cui, Longfei Li, Jun Zhou, Sheng Li
- Abstract要約: 大規模言語モデル(LLM)は自然言語のタスクを約束するが、金融のような複雑なドメインに直接適用した場合に苦労する。
我々は、LLMが金融業務をよりうまく扱えるようにするために、データ中心のアプローチを提案する。
- 参考スコア(独自算出の注目度): 27.464319154543173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) show promise for natural language tasks but
struggle when applied directly to complex domains like finance. LLMs have
difficulty reasoning about and integrating all relevant information. We propose
a data-centric approach to enable LLMs to better handle financial tasks. Our
key insight is that rather than overloading the LLM with everything at once, it
is more effective to preprocess and pre-understand the data. We create a
financial LLM (FLLM) using multitask prompt-based finetuning to achieve data
pre-processing and pre-understanding. However, labeled data is scarce for each
task. To overcome manual annotation costs, we employ abductive augmentation
reasoning (AAR) to automatically generate training data by modifying the pseudo
labels from FLLM's own outputs. Experiments show our data-centric FLLM with AAR
substantially outperforms baseline financial LLMs designed for raw text,
achieving state-of-the-art on financial analysis and interpretation tasks. We
also open source a new benchmark for financial analysis and interpretation. Our
methodology provides a promising path to unlock LLMs' potential for complex
real-world domains.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語のタスクを約束するが、金融のような複雑なドメインに直接適用した場合に苦労する。
llmはすべての関連する情報の推論と統合が難しい。
我々は、llmが金融業務をよりうまく扱うためのデータ中心のアプローチを提案する。
私たちの重要な洞察は、すべてを一度にLLMをオーバーロードするのではなく、データの事前処理と事前理解がより効果的であるということです。
我々は,マルチタスク・プロンプトに基づくファインタニングを用いた金融LLM(FLLM)を作成し,データの事前処理と事前理解を実現する。
しかし、ラベル付きデータは各タスクに乏しい。
手動アノテーションのコストを克服するため、FLLMの出力から擬似ラベルを変更することで、誘導的拡張推論(AAR)を用いてトレーニングデータを自動的に生成する。
実験の結果,データ中心のFLLMとAARは,生テキスト用に設計された基本的財務LLMを著しく上回り,財務分析や解釈タスクの最先端を達成していることがわかった。
また、財務分析と解釈のための新しいベンチマークをオープンソースにしています。
我々の方法論は、複雑な現実世界のドメインに対するLLMのポテンシャルを解き放つための有望な道を提供する。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
大規模言語モデル(LLM)は、特定のクエリに対する不正確な応答を生成する傾向がある。
我々は, LLMのトークン化に挑戦するために, $textbfADT (TokenizerのAdrial dataset)$という逆データセットを構築した。
GPT-4o, Llama-3, Qwen2.5-maxなど, 先進LLMのトークン化に挑戦する上で, 当社のADTは極めて有効であることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-27T11:39:59Z) - $\forall$uto$\exists$val: Autonomous Assessment of LLMs in Formal Synthesis and Interpretation Tasks [21.12437562185667]
本稿では,形式構文を自然言語に翻訳する際のLLM評価のスケールアップ手法を提案する。
我々は、文脈自由文法(CFG)を用いて、その場で配布外のデータセットを生成する。
我々はまた、このパラダイムの実現可能性と拡張性を示すために、複数のSOTAクローズドおよびオープンソースLCMの評価を行う。
論文 参考訳(メタデータ) (2024-03-27T08:08:00Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Large Language Models in Finance: A Survey [12.243277149505364]
大規模言語モデル(LLM)は、金融における人工知能応用の新しい可能性を開いた。
大規模言語モデル(LLM)の最近の進歩は、金融における人工知能応用の新しい可能性を開いた。
論文 参考訳(メタデータ) (2023-09-28T06:04:04Z) - FinGPT: Democratizing Internet-scale Data for Financial Large Language
Models [35.83244096535722]
大型言語モデル (LLM) は、人間に似たテキストの理解と生成に顕著な熟練性を示した。
ファイナンシャル・ジェネレーティブ・プレトレーニング・トランスフォーマー(FinGPT)は、インターネット上の34の多様なソースからリアルタイムの財務データの収集とキュレーションを自動化する。
FinGPTは、FinLLMを民主化し、イノベーションを刺激し、オープンファイナンスにおける新たな機会を開放することを目指している。
論文 参考訳(メタデータ) (2023-07-19T22:43:57Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。