Understanding when Dynamics-Invariant Data Augmentations Benefit Model-Free Reinforcement Learning Updates
- URL: http://arxiv.org/abs/2310.17786v2
- Date: Sat, 16 Mar 2024 21:41:34 GMT
- Title: Understanding when Dynamics-Invariant Data Augmentations Benefit Model-Free Reinforcement Learning Updates
- Authors: Nicholas E. Corrado, Josiah P. Hanna,
- Abstract summary: We identify general aspects of data augmentation (DA) responsible for observed learning improvements.
Our study focuses on sparse-reward tasks with dynamics-invariant data augmentation functions.
- Score: 3.5253513747455303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, data augmentation (DA) has emerged as a method for leveraging domain knowledge to inexpensively generate additional data in reinforcement learning (RL) tasks, often yielding substantial improvements in data efficiency. While prior work has demonstrated the utility of incorporating augmented data directly into model-free RL updates, it is not well-understood when a particular DA strategy will improve data efficiency. In this paper, we seek to identify general aspects of DA responsible for observed learning improvements. Our study focuses on sparse-reward tasks with dynamics-invariant data augmentation functions, serving as an initial step towards a more general understanding of DA and its integration into RL training. Experimentally, we isolate three relevant aspects of DA: state-action coverage, reward density, and the number of augmented transitions generated per update (the augmented replay ratio). From our experiments, we draw two conclusions: (1) increasing state-action coverage often has a much greater impact on data efficiency than increasing reward density, and (2) decreasing the augmented replay ratio substantially improves data efficiency. In fact, certain tasks in our empirical study are solvable only when the replay ratio is sufficiently low.
Related papers
- Data Augmentation for Continual RL via Adversarial Gradient Episodic Memory [7.771348413934219]
In continual RL, the learner interacts with non-stationary, sequential tasks and is required to learn new tasks without forgetting previous knowledge.
In this paper, we investigate the efficacy of data augmentation for continual RL.
We show that data augmentations, such as random amplitude scaling, state-switch, mixup, adversarial augmentation, and Adv-GEM, can improve existing continual RL algorithms.
arXiv Detail & Related papers (2024-08-24T03:43:35Z) - Dissecting Deep RL with High Update Ratios: Combatting Value Divergence [21.282292112642747]
We show that deep reinforcement learning algorithms can retain their ability to learn without resetting network parameters.
We employ a simple unit-ball normalization that enables learning under large update ratios.
arXiv Detail & Related papers (2024-03-09T19:56:40Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
Long-tail models exhibit a strong demand for high-quality data.
Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance.
There is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation.
arXiv Detail & Related papers (2023-11-03T06:34:37Z) - DualAug: Exploiting Additional Heavy Augmentation with OOD Data
Rejection [77.6648187359111]
We propose a novel data augmentation method, named textbfDualAug, to keep the augmentation in distribution as much as possible at a reasonable time and computational cost.
Experiments on supervised image classification benchmarks show that DualAug improve various automated data augmentation method.
arXiv Detail & Related papers (2023-10-12T08:55:10Z) - Enhancing data efficiency in reinforcement learning: a novel imagination
mechanism based on mesh information propagation [0.3729614006275886]
We introduce a novel mesh information propagation mechanism, termed the 'Imagination Mechanism (IM)'
IM enables information generated by a single sample to be effectively broadcasted to different states across episodes.
To promote versatility, we extend the IM to function as a plug-and-play module that can be seamlessly and fluidly integrated into other widely adopted RL algorithms.
arXiv Detail & Related papers (2023-09-25T16:03:08Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
This study proposes an Implicit Counterfactual Data Augmentation method to remove spurious correlations and make stable predictions.
Experiments have been conducted across various biased learning scenarios covering both image and text datasets.
arXiv Detail & Related papers (2023-04-26T10:36:40Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Improving GANs with A Dynamic Discriminator [106.54552336711997]
We argue that a discriminator with an on-the-fly adjustment on its capacity can better accommodate such a time-varying task.
A comprehensive empirical study confirms that the proposed training strategy, termed as DynamicD, improves the synthesis performance without incurring any additional cost or training objectives.
arXiv Detail & Related papers (2022-09-20T17:57:33Z) - Generalization in Reinforcement Learning by Soft Data Augmentation [11.752595047069505]
SOft Data Augmentation (SODA) is a method that decouples augmentation from policy learning.
We find SODA to significantly advance sample efficiency, generalization, and stability in training over state-of-the-art vision-based RL methods.
arXiv Detail & Related papers (2020-11-26T17:00:34Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.