論文の概要: Local Discovery by Partitioning: Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs
- arxiv url: http://arxiv.org/abs/2310.17816v3
- Date: Sat, 1 Jun 2024 09:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 20:31:18.118578
- Title: Local Discovery by Partitioning: Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs
- Title(参考訳): パーティショニングによる地域発見:露光とアウトカムのペア周辺のポリノミアル時間因果発見
- Authors: Jacqueline Maasch, Weishen Pan, Shantanu Gupta, Volodymyr Kuleshov, Kyra Gan, Fei Wang,
- Abstract要約: 本稿では,因果推論タスクの分割(LDP)による局所的な発見を提案する。
LDPは制約ベースのプロシージャで、潜伏したコンバウンディングの下で露光出力ペアのVASを返す。
LDPの調整セットは、ベースライン発見アルゴリズムよりもバイアスが少なく、より正確な平均処理効果の推定値が得られる。
- 参考スコア(独自算出の注目度): 18.31538168213386
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Causal discovery is crucial for causal inference in observational studies, as it can enable the identification of valid adjustment sets (VAS) for unbiased effect estimation. However, global causal discovery is notoriously hard in the nonparametric setting, with exponential time and sample complexity in the worst case. To address this, we propose local discovery by partitioning (LDP): a local causal discovery method that is tailored for downstream inference tasks without requiring parametric and pretreatment assumptions. LDP is a constraint-based procedure that returns a VAS for an exposure-outcome pair under latent confounding, given sufficient conditions. The total number of independence tests performed is worst-case quadratic with respect to the cardinality of the variable set. Asymptotic theoretical guarantees are numerically validated on synthetic graphs. Adjustment sets from LDP yield less biased and more precise average treatment effect estimates than baseline discovery algorithms, with LDP outperforming on confounder recall, runtime, and test count for VAS discovery. Notably, LDP ran at least 1300x faster than baselines on a benchmark.
- Abstract(参考訳): 因果発見は、不偏効果推定のための有効な調整セット(VAS)の同定を可能にするため、観察研究において因果推論に不可欠である。
しかし、地球規模の因果発見は非パラメトリックな環境では難しいことで知られており、最悪の場合指数時間とサンプルの複雑さがある。
そこで本研究では,パラメトリックおよび前処理の仮定を必要とせず,下流推論タスクに適した局所因果探索法(LDP)を提案する。
LDPは制約ベースのプロシージャで、十分な条件が与えられた場合、潜伏条件下で露光出力ペアのVASを返す。
実行された独立テストの総数は、変数集合の濃度に関して最悪の2次数である。
漸近理論的保証は合成グラフ上で数値的に検証される。
LDPの調整セットは、ベースライン発見アルゴリズムよりもバイアスが少なく、より正確な平均治療効果の推定値が得られる。
特に、LLPはベンチマークのベースラインよりも少なくとも1300倍速く動作した。
関連論文リスト
- Local Prediction-Powered Inference [7.174572371800217]
本稿では,PPIを用いた局所多変量回帰のための特定のアルゴリズムを提案する。
信頼区間, バイアス補正, カバレッジ確率を解析し, アルゴリズムの正しさと優越性を検証した。
論文 参考訳(メタデータ) (2024-09-26T22:15:53Z) - Federated Nonparametric Hypothesis Testing with Differential Privacy Constraints: Optimal Rates and Adaptive Tests [5.3595271893779906]
フェデレート学習は、さまざまな場所でデータが収集され分析される広範囲な設定で適用可能であることから、近年大きな注目を集めている。
分散差分プライバシー(DP)制約下でのホワイトノイズ・ウィズ・ドリフトモデルにおける非パラメトリック適合性試験について検討した。
論文 参考訳(メタデータ) (2024-06-10T19:25:19Z) - Invariant Causal Prediction with Local Models [52.161513027831646]
観測データから対象変数の因果親を特定するタスクについて検討する。
L-ICP(textbfL$ocalized $textbfI$nvariant $textbfCa$usal $textbfP$rediction)と呼ばれる実用的手法を導入する。
論文 参考訳(メタデータ) (2024-01-10T15:34:42Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way partial AUC (OPAUC) と Two-way partial AUC (TPAUC) はバイナリ分類器の平均性能を測定する。
既存の手法のほとんどはPAUCをほぼ最適化するしかなく、制御不能なバイアスにつながる。
本稿では,分散ロバスト最適化AUCによるPAUC問題の簡易化について述べる。
論文 参考訳(メタデータ) (2022-10-08T08:26:22Z) - Accelerated and instance-optimal policy evaluation with linear function
approximation [17.995515643150657]
既存のアルゴリズムはこれらの下界の少なくとも1つと一致しない。
我々は,両下界を同時に一致させる高速時間差分アルゴリズムを開発し,インスタンス最適性という強い概念を実現する。
論文 参考訳(メタデータ) (2021-12-24T17:21:04Z) - Causal Order Identification to Address Confounding: Binary Variables [4.56877715768796]
本稿では,線形非ガウス非巡回モデル(LiNGAM)の拡張について考察する。
LiNGAMは、変数が雑音を含む一連の線形方程式で表されるとき、データセットから変数間の因果順序を決定する。
論文 参考訳(メタデータ) (2021-08-10T22:09:43Z) - LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial
Attack [74.5144793386864]
LSDATは、入力サンプルのスパース成分と対向サンプルのスパース成分によって形成される低次元部分空間における摂動を加工する。
LSDは画像ピクセル領域で直接動作し、スパース性などの非$ell$制約が満たされることを保証します。
論文 参考訳(メタデータ) (2021-03-19T13:10:47Z) - On the Practicality of Differential Privacy in Federated Learning by
Tuning Iteration Times [51.61278695776151]
フェデレートラーニング(FL)は、分散クライアント間で機械学習モデルを協調的にトレーニングする際のプライバシ保護でよく知られている。
最近の研究では、naive flは勾配リーク攻撃の影響を受けやすいことが指摘されている。
ディファレンシャルプライバシ(dp)は、勾配漏洩攻撃を防御するための有望な対策として現れる。
論文 参考訳(メタデータ) (2021-01-11T19:43:12Z) - On the Convergence Rate of Projected Gradient Descent for a
Back-Projection based Objective [58.33065918353532]
我々は、最小二乗(LS)の代替として、バックプロジェクションに基づく忠実度項を考える。
LS項ではなくBP項を用いることで最適化アルゴリズムの繰り返しを少なくすることを示す。
論文 参考訳(メタデータ) (2020-05-03T00:58:23Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。