EcoLearn: Optimizing the Carbon Footprint of Federated Learning
- URL: http://arxiv.org/abs/2310.17972v2
- Date: Sun, 18 May 2025 00:18:48 GMT
- Title: EcoLearn: Optimizing the Carbon Footprint of Federated Learning
- Authors: Talha Mehboob, Noman Bashir, Jesus Omana Iglesias, Michael Zink, David Irwin,
- Abstract summary: Federated Learning (FL) distributes machine learning (ML) training across edge devices to reduce data transfer overhead and protect data privacy.<n>FL model training may span hundreds of devices and is thus resource- and energy-intensive.<n>We design EcoLearn, which minimizes FL's carbon footprint without significantly affecting model accuracy or training time.
- Score: 1.4257277178729617
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) distributes machine learning (ML) training across edge devices to reduce data transfer overhead and protect data privacy. Since FL model training may span hundreds of devices and is thus resource- and energy-intensive, it has a significant carbon footprint. Importantly, since energy's carbon-intensity differs substantially (by up to 60$\times$) across locations, training on the same device using the same amount of energy, but at different locations, can incur widely different carbon emissions. While prior work has focused on improving FL's resource- and energy-efficiency by optimizing time-to-accuracy, it implicitly assumes all energy has the same carbon intensity and thus does not optimize carbon efficiency, i.e., work done per unit of carbon emitted. To address the problem, we design EcoLearn, which minimizes FL's carbon footprint without significantly affecting model accuracy or training time. EcoLearn achieves a favorable tradeoff by integrating carbon awareness into multiple aspects of FL training, including i) selecting clients with high data utility and low carbon, ii) provisioning more clients during the initial training rounds, and iii) mitigating stragglers by dynamically adjusting client over-provisioning based on carbon. We implement EcoLearn and its carbon-aware FL training policies in the Flower framework and show that it reduces the carbon footprint of training (by up to $10.8$$\times$) while maintaining model accuracy and training time (within $\sim$$1$\%) compared to state-of-the-art approaches.
Related papers
- Diffusion-Modeled Reinforcement Learning for Carbon and Risk-Aware Microgrid Optimization [48.70916202664808]
DiffCarl is a diffusion-modeled carbon- and risk-aware reinforcement learning algorithm for intelligent operation of multi-microgrid systems.<n>It outperforms classic algorithms and state-of-the-art DRL solutions, with 2.3-30.1% lower operational cost.<n>It also achieves 28.7% lower carbon emissions than those of its carbon-unaware variant and reduces performance variability.
arXiv Detail & Related papers (2025-07-22T03:27:07Z) - SPEQ: Offline Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning [51.10866035483686]
High update-to-data (UTD) ratio algorithms in reinforcement learning (RL) improve sample efficiency but incur high computational costs, limiting real-world scalability.
We propose Offline Stabilization Phases for Efficient Q-Learning (SPEQ), an RL algorithm that combines low-UTD online training with periodic offline stabilization phases.
During these phases, Q-functions are fine-tuned with high UTD ratios on a fixed replay buffer, reducing redundant updates on suboptimal data.
arXiv Detail & Related papers (2025-01-15T09:04:19Z) - Federated Learning with Workload Reduction through Partial Training of Client Models and Entropy-Based Data Selection [3.9981390090442694]
We propose FedFT-EDS, a novel approach that combines Fine-Tuning of partial client models with Entropy-based Data Selection to reduce training workloads on edge devices.
Our experiments show that FedFT-EDS uses only 50% user data while improving the global model performance compared to baseline methods, FedAvg and FedProx.
FedFT-EDS improves client learning efficiency by up to 3 times, using one third of training time on clients to achieve an equivalent performance to the baselines.
arXiv Detail & Related papers (2024-12-30T22:47:32Z) - Save It All: Enabling Full Parameter Tuning for Federated Large Language Models via Cycle Block Gradient Descent [15.463595798992621]
Large language models (LLMs) have revolutionized the deep learning paradigm, yielding impressive results across a wide array of tasks.
Existing solutions make the unrealistic assumption that the entire model is exchanged for training.
We introduce a novel method for the efficient training and fine-tuning of LLMs in FL, with minimal resource consumption.
arXiv Detail & Related papers (2024-06-17T03:49:44Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - FedGreen: Carbon-aware Federated Learning with Model Size Adaptation [36.283273000969636]
Federated learning (FL) provides a promising collaborative framework to build a model from distributed clients.
Cloud and edge servers hosting FL clients may exhibit diverse carbon footprints influenced by their geographical locations with varying power sources.
We propose FedGreen, a carbon-aware FL approach to efficiently train models by adopting adaptive model sizes shared with clients.
arXiv Detail & Related papers (2024-04-23T20:37:26Z) - CAFE: Carbon-Aware Federated Learning in Geographically Distributed Data
Centers [18.54380015603228]
Training large-scale artificial intelligence (AI) models demands significant computational power and energy, leading to increased carbon footprint with potential environmental repercussions.
This paper delves into the challenges of training AI models across geographically distributed (geo-distributed) data centers, emphasizing the balance between learning performance and carbon footprint.
We propose a new framework called CAFE (short for Carbon-Aware Federated Learning) to optimize training within a fixed carbon footprint budget.
arXiv Detail & Related papers (2023-11-06T23:59:22Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - A Carbon Tracking Model for Federated Learning: Impact of Quantization and Sparsification [5.341266334051207]
Federated Learning (FL) methods adopt efficient communication technologies to distribute machine learning tasks across edge devices.
This paper proposes a framework for real-time monitoring of the energy and carbon footprint impacts of FL systems.
arXiv Detail & Related papers (2023-10-12T07:20:03Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Green Federated Learning [7.003870178055125]
Federated Learning (FL) is a machine learning technique for training a centralized model using data of decentralized entities.
FL may leverage as many as hundreds of millions of globally distributed end-user devices with diverse energy sources.
We propose the concept of Green FL, which involves optimizing FL parameters and making design choices to minimize carbon emissions.
arXiv Detail & Related papers (2023-03-26T02:23:38Z) - Chasing Low-Carbon Electricity for Practical and Sustainable DNN
Training [4.0441558412180365]
We present a solution that reduces the carbon footprint of training without migrating or postponing jobs.
Specifically, our solution observes real-time carbon intensity shifts during training and controls the energy consumption of GPU.
In order to proactively adapt to shifting carbon intensity, we propose a lightweight machine learning algorithm.
arXiv Detail & Related papers (2023-03-04T21:33:29Z) - AnycostFL: Efficient On-Demand Federated Learning over Heterogeneous
Edge Devices [20.52519915112099]
We propose a cost-adjustable FL framework, named AnycostFL, that enables diverse edge devices to efficiently perform local updates.
Experiment results indicate that, our learning framework can reduce up to 1.9 times of the training latency and energy consumption for realizing a reasonable global testing accuracy.
arXiv Detail & Related papers (2023-01-08T15:25:55Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
We quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle.
We estimate that BLOOM's final training emitted approximately 24.7 tonnes ofcarboneqif we consider only the dynamic power consumption.
We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of machine learning models.
arXiv Detail & Related papers (2022-11-03T17:13:48Z) - ZeroFL: Efficient On-Device Training for Federated Learning with Local
Sparsity [15.908499928588297]
In Federated Learning (FL), nodes are orders of magnitude more constrained than traditional server-grade hardware.
We propose ZeroFL, a framework that relies on highly sparse operations to accelerate on-device training.
arXiv Detail & Related papers (2022-08-04T07:37:07Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.