論文の概要: When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications
- arxiv url: http://arxiv.org/abs/2310.18339v2
- Date: Fri, 31 May 2024 07:56:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:31:38.658017
- Title: When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications
- Title(参考訳): MOEとLLM:マルチタスク医療応用のためのパラメータ効率的な微調整
- Authors: Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, Yefeng Zheng,
- Abstract要約: 我々はMOELoRAと呼ばれるマルチタスク医療応用のためのパラメータ効率の良い微調整フレームワークを提案する。
MOEとLoRAを統一するために、トレーニング可能なパラメータとして複数の専門家を考案し、トレーニング可能なパラメータの小さなサイズを保持するために、各専門家は2つの低ランク行列から構成される。
マルチタスク医療データセットを用いて実験を行い、MOELoRAが既存のパラメータを効率よく微調整する手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 57.342772288710044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent surge in Large Language Models (LLMs) has garnered significant attention across numerous fields. Fine-tuning is often required to fit general LLMs for a specific domain, like the web-based healthcare system. However, two problems arise during fine-tuning LLMs for medical applications. One is the task variety problem, which involves distinct tasks in real-world medical scenarios. The variety often leads to sub-optimal fine-tuning for data imbalance and seesaw problems. Besides, the large amount of parameters in LLMs leads to huge time and computation consumption by fine-tuning. To address these two problems, we propose a novel parameter efficient fine-tuning framework for multi-task medical applications, dubbed as MOELoRA. The designed framework aims to absorb both the benefits of mixture-of-expert (MOE) for multi-task learning and low-rank adaptation (LoRA) for parameter efficient fine-tuning. For unifying MOE and LoRA, we devise multiple experts as the trainable parameters, where each expert consists of a pair of low-rank matrices to retain the small size of trainable parameters. Then, a task-motivated gate function for all MOELoRA layers is proposed, which can control the contributions of each expert and produce distinct parameters for various tasks. We conduct experiments on a multi-task medical dataset, indicating MOELoRA outperforms the existing parameter efficient fine-tuning methods. The code is available online.
- Abstract(参考訳): 近年のLarge Language Models(LLM)の急増は、多くの分野において大きな注目を集めている。
ファインチューニングは、Webベースの医療システムのように、特定のドメインに一般的なLLMを適合させるために必要となることが多い。
しかし、医療応用のための微調整LDMの間には2つの問題が生じる。
ひとつはタスクバラエティの問題であり、現実の医療シナリオにおいて異なるタスクが伴う。
この多様性は、データ不均衡とシーソー問題に対する準最適微調整につながることが多い。
LLMの大量のパラメータは、微調整によって膨大な時間と計算消費をもたらす。
これら2つの問題に対処するために,MOELoRAと呼ばれるマルチタスク医療応用のためのパラメータ効率の良い微調整フレームワークを提案する。
設計されたフレームワークは、マルチタスク学習におけるMix-of-expert(MOE)の利点とパラメータ効率の良い微調整のためのローランク適応(LoRA)の両方を吸収することを目的としている。
MOEとLoRAを統一するために、トレーニング可能なパラメータとして複数の専門家を考案し、トレーニング可能なパラメータの小さなサイズを保持するために、各専門家は2つの低ランク行列から構成される。
そして,すべてのMOELoRA層に対するタスクモチベーションゲート関数を提案し,各専門家のコントリビューションを制御し,タスクごとに異なるパラメータを生成する。
マルチタスク医療データセットを用いて実験を行い、MOELoRAが既存のパラメータを効率よく微調整する手法よりも優れていることを示す。
コードはオンラインで入手できる。
関連論文リスト
- MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
マルチタスク学習能力を大幅に向上させながら、低ランク適応の利点を保ちながら、MTL-LoRAを提案する。
MTL-LoRAは、タスク固有の情報を識別するタスク適応パラメータを追加することでLoRAを強化する。
このアプローチにより、汎用コーパス上で事前訓練された大規模言語モデル(LLM)が、限られた数のトレーニング可能なパラメータで異なるターゲットタスクドメインに適応できる。
論文 参考訳(メタデータ) (2024-10-12T08:32:26Z) - MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts [6.245113492272563]
Mixture of Dyadic Experts (MoDE) は効率的なマルチタスク適応のための新しい設計である。
我々の設計はよりきめ細かい混合を可能にし、それによってモデルの複数のタスクを共同で処理する能力を高めます。
論文 参考訳(メタデータ) (2024-08-02T18:05:10Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
差別的, 生成的両マルチモーダル医療課題に対処する新しい枠組みを提案する。
Med-MoEの学習は、マルチモーダル医療アライメント、命令チューニングとルーティング、ドメイン固有のMoEチューニングの3つのステップで構成されている。
我々のモデルは最先端のベースラインに匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2024-04-16T02:35:17Z) - MING-MOE: Enhancing Medical Multi-Task Learning in Large Language Models with Sparse Mixture of Low-Rank Adapter Experts [22.596827147978598]
本稿では,MING-MOE(Mixture-of-Expert)をベースとした医療用大規模言語モデルを提案する。
タスク固有のアノテーションを必要とせずに、多種多様な複雑な医療タスクを管理するように設計されている。
20以上の医療タスクで最先端(SOTA)のパフォーマンスを達成し、既存のモデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-04-13T15:28:52Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
低ランク適応 (LoRA) は、適応過程が本質的に低次元であるという考えに基づいている。
我々は、より高階を維持しながらトレーニング可能なパラメータを少なくするミニアンサンブルな低ランクアダプタMELoRAを提案する。
実験結果から, 自然言語理解タスクの8倍のトレーニングパラメータ, 続くタスクの36倍のトレーニングパラメータが得られた。
論文 参考訳(メタデータ) (2024-02-27T07:14:12Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [54.65520214291653]
本稿では,Low-Rank Adaption (LoRA) とマルチモーダル命令チューニングを統合した新しい手法を提案する。
各入力インスタンスのユニークな要求に合わせた低ランク適応行列を動的に構築することで、LoRAを革新する。
様々なマルチモーダル評価データセットの実験結果から、MixLoRAは従来のLoRAを同等以上のランクで上回るだけでなく、性能も向上していることが示された。
論文 参考訳(メタデータ) (2024-02-24T20:15:31Z) - Attentional Mixtures of Soft Prompt Tuning for Parameter-efficient
Multi-task Knowledge Sharing [53.399742232323895]
ATTEMPTは、新しいモジュラー、マルチタスク、パラメータ効率の言語モデル(LM)チューニングアプローチである。
異なるタスク間で伝達される知識をソフトプロンプトの混合によって組み合わせ、元のLMをそのまま維持する。
パラメータ効率(例えば、微調整よりも1,600倍少ないパラメータを更新)であり、マルチタスク学習と柔軟な拡張を可能にする。
論文 参考訳(メタデータ) (2022-05-24T10:48:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。