論文の概要: MING-MOE: Enhancing Medical Multi-Task Learning in Large Language Models with Sparse Mixture of Low-Rank Adapter Experts
- arxiv url: http://arxiv.org/abs/2404.09027v1
- Date: Sat, 13 Apr 2024 15:28:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 17:34:10.184720
- Title: MING-MOE: Enhancing Medical Multi-Task Learning in Large Language Models with Sparse Mixture of Low-Rank Adapter Experts
- Title(参考訳): MING-MOE:低ランクアダプタエキスパートの疎混合による大規模言語モデルにおける医用マルチタスク学習の強化
- Authors: Yusheng Liao, Shuyang Jiang, Yu Wang, Yanfeng Wang,
- Abstract要約: 本稿では,MING-MOE(Mixture-of-Expert)をベースとした医療用大規模言語モデルを提案する。
タスク固有のアノテーションを必要とせずに、多種多様な複雑な医療タスクを管理するように設計されている。
20以上の医療タスクで最先端(SOTA)のパフォーマンスを達成し、既存のモデルよりも大幅に改善されている。
- 参考スコア(独自算出の注目度): 22.596827147978598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models like ChatGPT have shown substantial progress in natural language understanding and generation, proving valuable across various disciplines, including the medical field. Despite advancements, challenges persist due to the complexity and diversity inherent in medical tasks which often require multi-task learning capabilities. Previous approaches, although beneficial, fall short in real-world applications because they necessitate task-specific annotations at inference time, limiting broader generalization. This paper introduces MING-MOE, a novel Mixture-of-Expert~(MOE)-based medical large language model designed to manage diverse and complex medical tasks without requiring task-specific annotations, thus enhancing its usability across extensive datasets. MING-MOE employs a Mixture of Low-Rank Adaptation (MoLoRA) technique, allowing for efficient parameter usage by maintaining base model parameters static while adapting through a minimal set of trainable parameters. We demonstrate that MING-MOE achieves state-of-the-art (SOTA) performance on over 20 medical tasks, illustrating a significant improvement over existing models. This approach not only extends the capabilities of medical language models but also improves inference efficiency.
- Abstract(参考訳): ChatGPTのような大規模な言語モデルでは、自然言語の理解と生成が大幅に進歩しており、医学分野を含む様々な分野において価値のあるものとなっている。
進歩にもかかわらず、多タスク学習能力を必要とする医療タスクに固有の複雑さと多様性のため、課題は継続する。
従来のアプローチは有益ではあるが、推論時にタスク固有のアノテーションを必要とするため、現実世界のアプリケーションでは不足しており、より広範な一般化が制限されている。
本稿では,MING-MOEについて紹介する。MING-MOE(Mixture-of-Expert~(MOE)ベースの医療用大規模言語モデルで,タスク固有のアノテーションを必要とせず,多種多様かつ複雑な医療用タスクを管理する。
MING-MOEはMixture of Low-Rank Adaptation (MoLoRA)技術を用いており、最小限のトレーニング可能なパラメータセットを通じて適応しながらベースモデルパラメータを静的に保つことで、効率的なパラメータ使用を可能にする。
MING-MOEは20以上の医療タスクにおいて最先端(SOTA)のパフォーマンスを達成し,既存モデルに対する大幅な改善を図っている。
このアプローチは、医療言語モデルの能力を拡張するだけでなく、推論効率も向上する。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - MedViLaM: A multimodal large language model with advanced generalizability and explainability for medical data understanding and generation [40.9095393430871]
MedViLaMは、医用データの汎用モデルに向けた統合視覚言語モデルである。
MedViLaMは、臨床言語や画像など、様々な形の医療データを柔軟にエンコードし、解釈することができる。
ゼロショットの一般化を新しい医療概念やタスクに適用し、異なるタスク間で効果的な伝達学習を行い、ゼロショットの医学推論が出現する事例を提示する。
論文 参考訳(メタデータ) (2024-09-29T12:23:10Z) - Towards Democratizing Multilingual Large Language Models For Medicine Through A Two-Stage Instruction Fine-tuning Approach [6.921012069327385]
オープンソースの多言語医療用大規模言語モデル (LLM) は、様々な地域において言語的に多様な人口を提供する可能性を秘めている。
6言語で200万以上の高品質な医療サンプルを含む2つの多言語命令微調整データセットを導入する。
第1段階はMMed-IFTを用いて一般的な医療知識を注入し,第2段階はMMed-IFT-MCを用いたタスク固有の複数選択質問を行う。
論文 参考訳(メタデータ) (2024-09-09T15:42:19Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
差別的, 生成的両マルチモーダル医療課題に対処する新しい枠組みを提案する。
Med-MoEの学習は、マルチモーダル医療アライメント、命令チューニングとルーティング、ドメイン固有のMoEチューニングの3つのステップで構成されている。
我々のモデルは最先端のベースラインに匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2024-04-16T02:35:17Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - MedXChat: A Unified Multimodal Large Language Model Framework towards CXRs Understanding and Generation [28.497591315598402]
MLLM(Multimodal Large Language Models)は、様々な画像処理タスクで成功している。
胸部X線(CXR)の理解・生成におけるMLLMsの可能性について検討した。
論文 参考訳(メタデータ) (2023-12-04T06:40:12Z) - When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications [57.342772288710044]
我々はMOELoRAと呼ばれるマルチタスク医療応用のためのパラメータ効率の良い微調整フレームワークを提案する。
MOEとLoRAを統一するために、トレーニング可能なパラメータとして複数の専門家を考案し、トレーニング可能なパラメータの小さなサイズを保持するために、各専門家は2つの低ランク行列から構成される。
マルチタスク医療データセットを用いて実験を行い、MOELoRAが既存のパラメータを効率よく微調整する手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-21T17:18:09Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - Gradient Vaccine: Investigating and Improving Multi-task Optimization in
Massively Multilingual Models [63.92643612630657]
本稿では、損失関数幾何学のレンズを通して多言語最適化のブラックボックスを覗き込もうとする。
最適化軌道に沿って測定された勾配類似性は重要な信号であり、言語近接とよく相関している。
そこで我々はGradient Vaccineというシンプルでスケーラブルな最適化手法を考案した。
論文 参考訳(メタデータ) (2020-10-12T17:26:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。