Large Language Models Are Better Adversaries: Exploring Generative
Clean-Label Backdoor Attacks Against Text Classifiers
- URL: http://arxiv.org/abs/2310.18603v1
- Date: Sat, 28 Oct 2023 06:11:07 GMT
- Title: Large Language Models Are Better Adversaries: Exploring Generative
Clean-Label Backdoor Attacks Against Text Classifiers
- Authors: Wencong You, Zayd Hammoudeh, Daniel Lowd
- Abstract summary: Backdoor attacks manipulate model predictions by inserting innocuous triggers into training and test data.
We focus on more realistic and more challenging clean-label attacks where the adversarial training examples are correctly labeled.
Our attack, LLMBkd, leverages language models to automatically insert diverse style-based triggers into texts.
- Score: 25.94356063000699
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks manipulate model predictions by inserting innocuous triggers
into training and test data. We focus on more realistic and more challenging
clean-label attacks where the adversarial training examples are correctly
labeled. Our attack, LLMBkd, leverages language models to automatically insert
diverse style-based triggers into texts. We also propose a poison selection
technique to improve the effectiveness of both LLMBkd as well as existing
textual backdoor attacks. Lastly, we describe REACT, a baseline defense to
mitigate backdoor attacks via antidote training examples. Our evaluations
demonstrate LLMBkd's effectiveness and efficiency, where we consistently
achieve high attack success rates across a wide range of styles with little
effort and no model training.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks [11.390175856652856]
Clean-label attacks are a more stealthy form of backdoor attacks that can perform the attack without changing the labels of poisoned data.
We study different strategies for selectively poisoning a small set of training samples in the target class to boost the attack success rate.
Our threat model poses a serious threat in training machine learning models with third-party datasets.
arXiv Detail & Related papers (2024-07-15T15:38:21Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Universal Vulnerabilities in Large Language Models: Backdoor Attacks for In-context Learning [14.011140902511135]
In-context learning, a paradigm bridging the gap between pre-training and fine-tuning, has demonstrated high efficacy in several NLP tasks.
Despite being widely applied, in-context learning is vulnerable to malicious attacks.
We design a new backdoor attack method, named ICLAttack, to target large language models based on in-context learning.
arXiv Detail & Related papers (2024-01-11T14:38:19Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Attention-Enhancing Backdoor Attacks Against BERT-based Models [54.070555070629105]
Investigating the strategies of backdoor attacks will help to understand the model's vulnerability.
We propose a novel Trojan Attention Loss (TAL) which enhances the Trojan behavior by directly manipulating the attention patterns.
arXiv Detail & Related papers (2023-10-23T01:24:56Z) - Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in
Language Models [41.1058288041033]
We propose ProAttack, a novel and efficient method for performing clean-label backdoor attacks based on the prompt.
Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack.
arXiv Detail & Related papers (2023-05-02T06:19:36Z) - BITE: Textual Backdoor Attacks with Iterative Trigger Injection [24.76186072273438]
Backdoor attacks have become an emerging threat to NLP systems.
By providing poisoned training data, the adversary can embed a "backdoor" into the victim model.
We propose BITE, a backdoor attack that poisons the training data to establish strong correlations between the target label and a set of "trigger words"
arXiv Detail & Related papers (2022-05-25T11:58:38Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
"Clean-label" backdoor attacks require knowledge of the entire training set to be effective.
This paper provides an algorithm to mount clean-label backdoor attacks based only on the knowledge of representative examples from the target class.
Our attack works well across datasets and models, even when the trigger presents in the physical world.
arXiv Detail & Related papers (2022-04-11T16:58:04Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.