SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks
- URL: http://arxiv.org/abs/2405.11575v1
- Date: Sun, 19 May 2024 14:50:09 GMT
- Title: SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks
- Authors: Xuanli He, Qiongkai Xu, Jun Wang, Benjamin I. P. Rubinstein, Trevor Cohn,
- Abstract summary: Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
- Score: 53.28390057407576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern NLP models are often trained on public datasets drawn from diverse sources, rendering them vulnerable to data poisoning attacks. These attacks can manipulate the model's behavior in ways engineered by the attacker. One such tactic involves the implantation of backdoors, achieved by poisoning specific training instances with a textual trigger and a target class label. Several strategies have been proposed to mitigate the risks associated with backdoor attacks by identifying and removing suspected poisoned examples. However, we observe that these strategies fail to offer effective protection against several advanced backdoor attacks. To remedy this deficiency, we propose a novel defensive mechanism that first exploits training dynamics to identify poisoned samples with high precision, followed by a label propagation step to improve recall and thus remove the majority of poisoned instances. Compared with recent advanced defense methods, our method considerably reduces the success rates of several backdoor attacks while maintaining high classification accuracy on clean test sets.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks [11.390175856652856]
Clean-label attacks are a more stealthy form of backdoor attacks that can perform the attack without changing the labels of poisoned data.
We study different strategies for selectively poisoning a small set of training samples in the target class to boost the attack success rate.
Our threat model poses a serious threat in training machine learning models with third-party datasets.
arXiv Detail & Related papers (2024-07-15T15:38:21Z) - UltraClean: A Simple Framework to Train Robust Neural Networks against Backdoor Attacks [19.369701116838776]
Backdoor attacks are emerging threats to deep neural networks.
They typically embed malicious behaviors into a victim model by injecting poisoned samples.
We propose UltraClean, a framework that simplifies the identification of poisoned samples.
arXiv Detail & Related papers (2023-12-17T09:16:17Z) - Attention-Enhancing Backdoor Attacks Against BERT-based Models [54.070555070629105]
Investigating the strategies of backdoor attacks will help to understand the model's vulnerability.
We propose a novel Trojan Attention Loss (TAL) which enhances the Trojan behavior by directly manipulating the attention patterns.
arXiv Detail & Related papers (2023-10-23T01:24:56Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios.
Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples.
We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks.
arXiv Detail & Related papers (2023-10-08T18:57:36Z) - Rethinking Backdoor Attacks [122.1008188058615]
In a backdoor attack, an adversary inserts maliciously constructed backdoor examples into a training set to make the resulting model vulnerable to manipulation.
Defending against such attacks typically involves viewing these inserted examples as outliers in the training set and using techniques from robust statistics to detect and remove them.
We show that without structural information about the training data distribution, backdoor attacks are indistinguishable from naturally-occurring features in the data.
arXiv Detail & Related papers (2023-07-19T17:44:54Z) - Mitigating Backdoor Poisoning Attacks through the Lens of Spurious
Correlation [43.75579468533781]
backdoors can be implanted through crafting training instances with a specific trigger and a target label.
This paper posits that backdoor poisoning attacks exhibit emphspurious correlation between simple text features and classification labels.
Our empirical study reveals that the malicious triggers are highly correlated to their target labels.
arXiv Detail & Related papers (2023-05-19T11:18:20Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.