論文の概要: Arbitrarily Scalable Environment Generators via Neural Cellular Automata
- arxiv url: http://arxiv.org/abs/2310.18622v1
- Date: Sat, 28 Oct 2023 07:30:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 17:31:50.128624
- Title: Arbitrarily Scalable Environment Generators via Neural Cellular Automata
- Title(参考訳): ニューラルセルオートマタによる任意拡張型環境発電機
- Authors: Yulun Zhang, Matthew C. Fontaine, Varun Bhatt, Stefanos Nikolaidis,
Jiaoyang Li
- Abstract要約: NCA環境ジェネレータは, 環境サイズに関わらず, 整合性, 規則化されたパターンを維持可能であることを示す。
提案手法は,類似したパターンを持つ大規模環境に対して,単エージェント強化学習ポリシーを任意に拡張する。
- 参考スコア(独自算出の注目度): 55.150593161240444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of generating arbitrarily large environments to improve
the throughput of multi-robot systems. Prior work proposes Quality Diversity
(QD) algorithms as an effective method for optimizing the environments of
automated warehouses. However, these approaches optimize only relatively small
environments, falling short when it comes to replicating real-world warehouse
sizes. The challenge arises from the exponential increase in the search space
as the environment size increases. Additionally, the previous methods have only
been tested with up to 350 robots in simulations, while practical warehouses
could host thousands of robots. In this paper, instead of optimizing
environments, we propose to optimize Neural Cellular Automata (NCA) environment
generators via QD algorithms. We train a collection of NCA generators with QD
algorithms in small environments and then generate arbitrarily large
environments from the generators at test time. We show that NCA environment
generators maintain consistent, regularized patterns regardless of environment
size, significantly enhancing the scalability of multi-robot systems in two
different domains with up to 2,350 robots. Additionally, we demonstrate that
our method scales a single-agent reinforcement learning policy to arbitrarily
large environments with similar patterns. We include the source code at
\url{https://github.com/lunjohnzhang/warehouse_env_gen_nca_public}.
- Abstract(参考訳): 本研究では,マルチロボットシステムのスループットを向上させるために,任意に大規模環境を生成する問題について検討する。
先行研究では、自動倉庫の環境を最適化する効果的な方法として品質多様性アルゴリズム(QD)を提案する。
しかし、これらのアプローチは比較的小さな環境のみを最適化し、現実の倉庫サイズを複製するという点では不足している。
この課題は、環境が大きくなるにつれて検索空間が指数関数的に増加することから生じる。
さらに、従来の方法はシミュレーションで最大350個のロボットでしかテストされておらず、実用的な倉庫では数千個のロボットを収容できる。
本稿では,環境を最適化する代わりに,QDアルゴリズムを用いてNCA(Neural Cellular Automata)環境ジェネレータの最適化を提案する。
我々は、小さな環境でQDアルゴリズムを用いたNAAジェネレータの集合を訓練し、テスト時に発電機から任意に大きな環境を生成する。
NCA環境ジェネレータは, 環境サイズに関わらず一貫した規則化されたパターンを維持し, 最大2,350個のロボットを持つ2つの異なる領域におけるマルチロボットシステムのスケーラビリティを著しく向上させる。
さらに,本手法は単一エージェント強化学習ポリシーを,類似したパターンを持つ大規模環境に任意に拡張することを示した。
ソースコードは \url{https://github.com/lunjohnzhang/warehouse_env_gen_nca_public} にある。
関連論文リスト
- Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning [8.471466670802815]
本稿では,多目的・マルチエージェント強化学習(MARL)アルゴリズムを提案する。
我々はエッジクラウドコンピューティングを用いたITS環境でアルゴリズムをテストする。
また,本アルゴリズムは,モジュール化および非同期オンライントレーニング手法により,様々な実用上の問題にも対処する。
論文 参考訳(メタデータ) (2024-03-13T18:05:16Z) - Distributed Inference and Fine-tuning of Large Language Models Over The
Internet [91.00270820533272]
大規模言語モデル(LLM)は、多くのNLPタスクで有用であり、サイズが向上する。
これらのモデルはハイエンドのハードウェアを必要とするため、ほとんどの研究者にはアクセスできない。
本研究では,システムスループットの最大化のためにデバイスを自動的に割り当てるフォールトトレラント推論アルゴリズムとロードバランシングプロトコルを開発する。
論文 参考訳(メタデータ) (2023-12-13T18:52:49Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Multi-Robot Coordination and Layout Design for Automated Warehousing [55.150593161240444]
我々は、最先端のMAPFアルゴリズムであっても、人間設計のレイアウトは、多数のロボットを持つ倉庫の混雑を招きかねないことを示す。
倉庫のレイアウトを最適化するために,既存のシナリオ自動生成手法を拡張した。
その結果,(1)交通渋滞の低減とスループットの向上,(2)ロボットの数を2倍にすることで自動倉庫のスケーラビリティの向上,(3)ユーザが特定した多様性対策でレイアウトを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-10T20:00:06Z) - Scalable Multi-robot Motion Planning for Congested Environments With
Topological Guidance [2.846144602096543]
マルチロボットモーションプランニング(MRMP)は、連続状態空間におけるロボットの衝突のない経路を見つける問題である。
我々は、トポロジカルガイダンスによって提供される改善された効率を活用するために、既存のシングルロボットモーションプランニング手法を拡張した。
提案手法は,多くの狭い経路を持つ複雑な環境における経路を効率的に計画する能力を示し,既存の方法の最大25倍の大きさのロボットチームに拡張する。
論文 参考訳(メタデータ) (2022-10-13T16:26:01Z) - ProcTHOR: Large-Scale Embodied AI Using Procedural Generation [55.485985317538194]
ProcTHORは、Embodied AI環境の手続き的生成のためのフレームワークである。
ナビゲーション、アレンジメント、アーム操作のための6つの具体化されたAIベンチマークに対して、最先端の結果を実証する。
論文 参考訳(メタデータ) (2022-06-14T17:09:35Z) - Deep Surrogate Assisted Generation of Environments [7.217405582720078]
品質多様性(QD)最適化は環境生成アルゴリズムの有効成分であることが証明されている。
本稿では,サンプル効率のよいQD環境生成アルゴリズムであるDeep Surrogate Assisted Generation of Environments (DSAGE)を提案する。
2つのベンチマークドメインの結果、DSAGEは既存のQD環境生成アルゴリズムを大幅に上回っている。
論文 参考訳(メタデータ) (2022-06-09T00:14:03Z) - You Only Compress Once: Towards Effective and Elastic BERT Compression
via Exploit-Explore Stochastic Nature Gradient [88.58536093633167]
既存のモデル圧縮アプローチでは、さまざまなハードウェアデプロイメントに対応するために、さまざまな制約にまたがる再圧縮や微調整が必要となる。
圧縮を一度行い、至るところに展開するための新しいアプローチであるYOCO-BERTを提案する。
最先端のアルゴリズムと比較すると、YOCO-BERTはよりコンパクトなモデルを提供するが、GLUEベンチマークの平均精度は2.1%-4.5%向上している。
論文 参考訳(メタデータ) (2021-06-04T12:17:44Z) - Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains [14.787379075870383]
本稿では、Tr-GOと呼ばれる歩行最適化のための移動学習に基づく進化的フレームワークを提案する。
この考え方は、トランスファーラーニング技術を用いて高品質な人口を初期化することを目的としており、どんな集団ベースの最適化アルゴリズムでもこのフレームワークにシームレスに統合できる。
実験の結果,3つの多目的進化アルゴリズムに基づく歩行最適化問題に対する提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-12-24T16:41:36Z) - New Fusion Algorithm provides an alternative approach to Robotic Path
planning [0.0]
本稿では,カスタム2次元環境における経路計画問題の解法として,新しい,効率的な融合アルゴリズムを提案する。
新しい融合アルゴリズムは、スムーズな性能で実現可能であり、従来の経路計画のA*戦略に代わる、時間効率で安価な代替手段として満足できる。
論文 参考訳(メタデータ) (2020-06-06T17:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。