論文の概要: Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2403.08879v1
- Date: Wed, 13 Mar 2024 18:05:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 22:46:57.702207
- Title: Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning
- Title(参考訳): 適応型分散強化学習を用いた多目的最適化
- Authors: Jing Tan, Ramin Khalili, Holger Karl,
- Abstract要約: 本稿では,多目的・マルチエージェント強化学習(MARL)アルゴリズムを提案する。
我々はエッジクラウドコンピューティングを用いたITS環境でアルゴリズムをテストする。
また,本アルゴリズムは,モジュール化および非同期オンライントレーニング手法により,様々な実用上の問題にも対処する。
- 参考スコア(独自算出の注目度): 8.471466670802815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Intelligent Transportation System (ITS) environment is known to be dynamic and distributed, where participants (vehicle users, operators, etc.) have multiple, changing and possibly conflicting objectives. Although Reinforcement Learning (RL) algorithms are commonly applied to optimize ITS applications such as resource management and offloading, most RL algorithms focus on single objectives. In many situations, converting a multi-objective problem into a single-objective one is impossible, intractable or insufficient, making such RL algorithms inapplicable. We propose a multi-objective, multi-agent reinforcement learning (MARL) algorithm with high learning efficiency and low computational requirements, which automatically triggers adaptive few-shot learning in a dynamic, distributed and noisy environment with sparse and delayed reward. We test our algorithm in an ITS environment with edge cloud computing. Empirical results show that the algorithm is quick to adapt to new environments and performs better in all individual and system metrics compared to the state-of-the-art benchmark. Our algorithm also addresses various practical concerns with its modularized and asynchronous online training method. In addition to the cloud simulation, we test our algorithm on a single-board computer and show that it can make inference in 6 milliseconds.
- Abstract(参考訳): インテリジェントトランスポーテーションシステム(ITS)環境は動的かつ分散していることが知られており、参加者(車両利用者、オペレーターなど)は複数の目的を達成し、変化し、おそらく矛盾する可能性がある。
Reinforcement Learning (RL)アルゴリズムはリソース管理やオフロードといったITSアプリケーションを最適化するために一般的に用いられるが、ほとんどのRLアルゴリズムは単一の目的にフォーカスする。
多くの場合、多目的問題を単一対象問題に変換することは不可能、難解、あるいは不十分であり、そのようなRLアルゴリズムを適用できない。
本稿では,多目的・マルチエージェント強化学習(MARL)アルゴリズムを提案する。
我々はエッジクラウドコンピューティングを用いたITS環境でアルゴリズムをテストする。
実験の結果,アルゴリズムは新しい環境に適応しやすく,最先端のベンチマークと比較すると,個々のメトリクスやシステムメトリクスの精度が向上していることがわかった。
また,本アルゴリズムは,モジュール化および非同期オンライントレーニング手法により,様々な実用上の問題にも対処する。
クラウドシミュレーションに加えて、シングルボードコンピュータ上でアルゴリズムをテストし、6ミリ秒で推論できることを示す。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - Multi-Objective Deep Reinforcement Learning for Optimisation in Autonomous Systems [3.2826250607043796]
MORL(Multi-Objective Reinforcement Learning)技術は存在するが、実世界のASシステムではなくRLベンチマークで採用されている。
本研究では,DWN(Deep W-Learning)と呼ばれるMORL技術を用いて,実行時性能最適化のための最適構成を求める。
我々はDWNとepsilon-greedyアルゴリズムとDeep Q-Networksの2つの単目的最適化実装を比較した。
論文 参考訳(メタデータ) (2024-08-02T11:16:09Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
重み付きチェビシェフスキャラライゼーションを用いたディープニューラルネットワーク(DNN)のトレーニングのための多目的最適化アルゴリズムを提案する。
本研究の目的は,DNNモデルの持続可能性問題,特にDeep Multi-Taskモデルに焦点をあてることである。
論文 参考訳(メタデータ) (2023-08-23T16:42:27Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
我々は,自律エージェント間の分散意思決定として,移動エージェントの動的グループ(自動車など)からの計算タスクのオフロードを定式化する。
我々は、競争と協力のバランスをとることで、そのようなエージェントにプライベートとシステム目標の整合を動機付けるインタラクションメカニズムを設計する。
本稿では,部分的,遅延,ノイズの多い状態情報を用いて学習する,新しいマルチエージェントオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T10:29:06Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
本稿では,現実的なスケジューリング問題を解決するための強化学習手法を提案する。
高性能コンピューティングコミュニティにおいて一般的に実行されるアルゴリズムであるColesky Factorizationに適用する。
我々のアルゴリズムは,アクター・クリティカル・アルゴリズム (A2C) と組み合わせてグラフニューラルネットワークを用いて,問題の適応表現をオンザフライで構築する。
論文 参考訳(メタデータ) (2020-11-09T10:57:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。