PhenoFlow: A Human-LLM Driven Visual Analytics System for Exploring Large and Complex Stroke Datasets
- URL: http://arxiv.org/abs/2407.16329v1
- Date: Tue, 23 Jul 2024 09:25:59 GMT
- Title: PhenoFlow: A Human-LLM Driven Visual Analytics System for Exploring Large and Complex Stroke Datasets
- Authors: Jaeyoung Kim, Sihyeon Lee, Hyeon Jeon, Keon-Joo Lee, Hee-Joon Bae, Bohyoung Kim, Jinwook Seo,
- Abstract summary: PhenoFlow is a visual analytics system that leverages the collaboration between human and Large Language Models (LLMs)
PhenoFlow only utilizes metadata to make inferences and synthesize executable codes, without accessing raw patient data.
Our research demonstrates the potential of utilizing LLMs to tackle current challenges in data-driven clinical decision-making for acute ischemic stroke patients.
- Score: 21.783005762375417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acute stroke demands prompt diagnosis and treatment to achieve optimal patient outcomes. However, the intricate and irregular nature of clinical data associated with acute stroke, particularly blood pressure (BP) measurements, presents substantial obstacles to effective visual analytics and decision-making. Through a year-long collaboration with experienced neurologists, we developed PhenoFlow, a visual analytics system that leverages the collaboration between human and Large Language Models (LLMs) to analyze the extensive and complex data of acute ischemic stroke patients. PhenoFlow pioneers an innovative workflow, where the LLM serves as a data wrangler while neurologists explore and supervise the output using visualizations and natural language interactions. This approach enables neurologists to focus more on decision-making with reduced cognitive load. To protect sensitive patient information, PhenoFlow only utilizes metadata to make inferences and synthesize executable codes, without accessing raw patient data. This ensures that the results are both reproducible and interpretable while maintaining patient privacy. The system incorporates a slice-and-wrap design that employs temporal folding to create an overlaid circular visualization. Combined with a linear bar graph, this design aids in exploring meaningful patterns within irregularly measured BP data. Through case studies, PhenoFlow has demonstrated its capability to support iterative analysis of extensive clinical datasets, reducing cognitive load and enabling neurologists to make well-informed decisions. Grounded in long-term collaboration with domain experts, our research demonstrates the potential of utilizing LLMs to tackle current challenges in data-driven clinical decision-making for acute ischemic stroke patients.
Related papers
- Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Modelling Patient Trajectories Using Multimodal Information [0.0]
We propose a solution to model patient trajectories that combines different types of information and considers the temporal aspect of clinical data.
The developed solution was evaluated on two different clinical outcomes, unexpected patient readmission and disease progression.
arXiv Detail & Related papers (2022-09-09T10:20:54Z) - Enabling scalable clinical interpretation of ML-based phenotypes using
real world data [0.0]
This study investigates approaches to perform patient stratification analysis at scale using large EHR datasets.
We have developed several tools to facilitate the clinical evaluation and interpretation of unsupervised patient stratification results.
arXiv Detail & Related papers (2022-08-02T17:31:03Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
This work addresses the task of optimally extracting information from longitudinal patient data in the real-world setting.
We show that with machine learning methods suited for patient trajectories modeling, we can predict disability progression of patients in a two-year horizon.
Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction.
arXiv Detail & Related papers (2020-11-09T20:48:00Z) - Deep learning prediction of patient response time course from early data
via neural-pharmacokinetic/pharmacodynamic modeling [0.0]
We show that the governing differential equations can be learnt directly from longitudinal patient data.
We propose a novel neural-PK/PD framework that combines key pharmacological principles with neural ordinary differential equations.
arXiv Detail & Related papers (2020-10-22T14:43:22Z) - A Predictive Visual Analytics System for Studying Neurodegenerative
Disease based on DTI Fiber Tracts [20.879437896802408]
We introduce an intelligent visual analytics system for studying patient groups based on their labeled DTI fiber tract data and corresponding statistics.
The system's AI-augmented interface guides the user through an organized and holistic analysis space.
We conduct several case studies using real data from the research database of Parkinson's Progression Markers Initiative.
arXiv Detail & Related papers (2020-10-13T06:34:45Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.