論文の概要: Purify++: Improving Diffusion-Purification with Advanced Diffusion
Models and Control of Randomness
- arxiv url: http://arxiv.org/abs/2310.18762v1
- Date: Sat, 28 Oct 2023 17:18:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 16:42:51.124879
- Title: Purify++: Improving Diffusion-Purification with Advanced Diffusion
Models and Control of Randomness
- Title(参考訳): purify++:先進拡散モデルによる拡散浄化の改善とランダム性制御
- Authors: Boya Zhang, Weijian Luo, Zhihua Zhang
- Abstract要約: 敵攻撃に対する防御はAIの安全性にとって重要である。
敵の浄化は、敵の攻撃を適切な前処理で防御するアプローチのファミリーである。
そこで我々は,新たな拡散浄化アルゴリズムであるPurify++を提案する。
- 参考スコア(独自算出の注目度): 22.87882885963586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks can mislead neural network classifiers. The defense
against adversarial attacks is important for AI safety. Adversarial
purification is a family of approaches that defend adversarial attacks with
suitable pre-processing. Diffusion models have been shown to be effective for
adversarial purification. Despite their success, many aspects of diffusion
purification still remain unexplored. In this paper, we investigate and improve
upon three limiting designs of diffusion purification: the use of an improved
diffusion model, advanced numerical simulation techniques, and optimal control
of randomness. Based on our findings, we propose Purify++, a new diffusion
purification algorithm that is now the state-of-the-art purification method
against several adversarial attacks. Our work presents a systematic exploration
of the limits of diffusion purification methods.
- Abstract(参考訳): 敵攻撃はニューラルネットワーク分類器を誤解させる可能性がある。
敵攻撃に対する防御はAIの安全性にとって重要である。
敵の浄化は、敵の攻撃を適切な前処理で防御するアプローチのファミリーである。
拡散モデルは敵の浄化に有効であることが示されている。
その成功にもかかわらず、拡散浄化の多くの側面はまだ未解明のままである。
本稿では,拡散モデルの改良,高度な数値シミュレーション手法,ランダム性の最適制御という,拡散浄化の3つの限界設計について検討・改善を行う。
そこで本研究では,新たな拡散浄化アルゴリズムであるpurify++を提案する。
本研究は拡散浄化法の限界を体系的に探究するものである。
関連論文リスト
- LoRID: Low-Rank Iterative Diffusion for Adversarial Purification [3.735798190358]
本研究は拡散に基づく浄化法に関する情報理論的な考察である。
内在的浄化誤差の低い対向摂動を除去する新しい低ランク反復拡散浄化法であるLoRIDを導入する。
LoRIDは、ホワイトボックスとブラックボックスの設定の両方で、CIFAR-10/100、CelebA-HQ、ImageNetデータセットで優れた堅牢性を実現する。
論文 参考訳(メタデータ) (2024-09-12T17:51:25Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
敵の浄化は、敵の攻撃からニューラルネットワークを守るための有望なアプローチの1つである。
分類器決定境界から遠ざかって, 清浄するgUided Purification (COUP)アルゴリズムを提案する。
実験結果から, COUPは強力な攻撃法でより優れた対向的堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2024-08-12T02:48:00Z) - Diffusion-based Adversarial Purification for Intrusion Detection [0.6990493129893112]
不正な摂動はMLモデルを誤解させ、攻撃者が検出を回避したり、誤った警告をトリガーしたりすることを可能にする。
敵の浄化は、特に有望な結果を示す拡散モデルによって、説得力のある解決策として現れてきた。
本稿では,ネットワーク侵入検出における逆例の浄化における拡散モデルの有効性を示す。
論文 参考訳(メタデータ) (2024-06-25T14:48:28Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
拡散性浄化(DBP)は、敵の攻撃に対する効果的な防御機構として出現している。
本稿では、DBPプロセスの本質が、その堅牢性の主要な要因であると主張している。
論文 参考訳(メタデータ) (2024-04-22T16:10:38Z) - DiffAttack: Evasion Attacks Against Diffusion-Based Adversarial
Purification [63.65630243675792]
拡散に基づく浄化防御は拡散モデルを利用して、敵の例の人工摂動を除去する。
近年の研究では、先進的な攻撃でさえ、そのような防御を効果的に破壊できないことが示されている。
拡散型浄化防衛を効果的かつ効率的に行うための統合フレームワークDiffAttackを提案する。
論文 参考訳(メタデータ) (2023-10-27T15:17:50Z) - Robust Evaluation of Diffusion-Based Adversarial Purification [3.634387981995277]
拡散法に基づく浄化法は,試験時間における入力データ点からの逆効果を除去することを目的としている。
白箱攻撃はしばしば浄化の堅牢性を測定するために使用される。
本研究では, 従来の拡散法に比べてロバスト性の向上を図った新しい浄化法を提案する。
論文 参考訳(メタデータ) (2023-03-16T02:47:59Z) - How to Backdoor Diffusion Models? [74.43215520371506]
本稿では,バックドア攻撃に対する拡散モデルの堅牢性に関する最初の研究について述べる。
我々は,バックドアインプラントのモデルトレーニング中に拡散過程を侵害する新たな攻撃フレームワークであるBadDiffusionを提案する。
本研究の結果は,拡散モデルの誤用や潜在的なリスクへの注意を呼び起こす。
論文 参考訳(メタデータ) (2022-12-11T03:44:38Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。