論文の概要: Diffusion-based Adversarial Purification for Intrusion Detection
- arxiv url: http://arxiv.org/abs/2406.17606v1
- Date: Tue, 25 Jun 2024 14:48:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 14:00:49.110113
- Title: Diffusion-based Adversarial Purification for Intrusion Detection
- Title(参考訳): 拡散法に基づく侵入検知のための逆浄化法
- Authors: Mohamed Amine Merzouk, Erwan Beurier, Reda Yaich, Nora Boulahia-Cuppens, Frédéric Cuppens,
- Abstract要約: 不正な摂動はMLモデルを誤解させ、攻撃者が検出を回避したり、誤った警告をトリガーしたりすることを可能にする。
敵の浄化は、特に有望な結果を示す拡散モデルによって、説得力のある解決策として現れてきた。
本稿では,ネットワーク侵入検出における逆例の浄化における拡散モデルの有効性を示す。
- 参考スコア(独自算出の注目度): 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The escalating sophistication of cyberattacks has encouraged the integration of machine learning techniques in intrusion detection systems, but the rise of adversarial examples presents a significant challenge. These crafted perturbations mislead ML models, enabling attackers to evade detection or trigger false alerts. As a reaction, adversarial purification has emerged as a compelling solution, particularly with diffusion models showing promising results. However, their purification potential remains unexplored in the context of intrusion detection. This paper demonstrates the effectiveness of diffusion models in purifying adversarial examples in network intrusion detection. Through a comprehensive analysis of the diffusion parameters, we identify optimal configurations maximizing adversarial robustness with minimal impact on normal performance. Importantly, this study reveals insights into the relationship between diffusion noise and diffusion steps, representing a novel contribution to the field. Our experiments are carried out on two datasets and against 5 adversarial attacks. The implementation code is publicly available.
- Abstract(参考訳): サイバー攻撃の高度化は、侵入検知システムにおける機械学習技術の統合を促しているが、敵の事例の出現は重大な課題である。
これらの巧妙な摂動はMLモデルを誤解させ、攻撃者は検出を回避したり、誤警報を発生させたりすることができる。
反応として、特に有望な結果を示す拡散モデルによって、敵の浄化が説得力のある解として現れた。
しかし、その浄化ポテンシャルは侵入検知の文脈では未解明のままである。
本稿では,ネットワーク侵入検出における逆例の浄化における拡散モデルの有効性を示す。
拡散パラメータの包括的解析により,通常の性能に最小限の影響を伴って,対向ロバスト性を最大化する最適構成を同定する。
本研究は,拡散雑音と拡散ステップの関係について考察し,新しい分野への貢献を示す。
実験は2つのデータセットと5つの敵攻撃に対して行われた。
実装コードは公開されている。
関連論文リスト
- Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
セグメンテーションのためのニューラルネットワークに対する敵攻撃を検出する不確実性に基づく手法を提案する。
我々は,不確実性に基づく敵攻撃の検出と様々な最先端ニューラルネットワークの詳細な解析を行う。
提案手法の有効性を示す数値実験を行った。
論文 参考訳(メタデータ) (2024-08-19T14:13:30Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
敵の浄化は、敵の攻撃からニューラルネットワークを守るための有望なアプローチの1つである。
分類器決定境界から遠ざかって, 清浄するgUided Purification (COUP)アルゴリズムを提案する。
実験結果から, COUPは強力な攻撃法でより優れた対向的堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2024-08-12T02:48:00Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
拡散性浄化(DBP)は、敵の攻撃に対する効果的な防御機構として出現している。
本稿では、DBPプロセスの本質が、その堅牢性の主要な要因であると主張している。
論文 参考訳(メタデータ) (2024-04-22T16:10:38Z) - DisDet: Exploring Detectability of Backdoor Attack on Diffusion Models [23.502100653704446]
いくつかの先駆的な研究は、バックドア攻撃に対する拡散モデルの脆弱性を示している。
本稿では,バックドア拡散モデルに対する有毒音入力の検出可能性について検討する。
有害な入力ノイズを効果的に識別できる低コストトリガー検出機構を提案する。
次に、攻撃側から同じ問題を研究するためにさらに一歩踏み出し、無意味なトリガーを学習できるバックドア攻撃戦略を提案します。
論文 参考訳(メタデータ) (2024-02-05T05:46:31Z) - Adversarial Purification for Data-Driven Power System Event Classifiers
with Diffusion Models [0.8848340429852071]
ファサー計測ユニット(PMU)のグローバル展開は、電力システムのリアルタイム監視を可能にする。
近年の研究では、機械学習に基づく手法が敵の攻撃に弱いことが示されている。
本稿では,拡散モデルに基づく効果的な対向的浄化手法を提案する。
論文 参考訳(メタデータ) (2023-11-13T06:52:56Z) - Purify++: Improving Diffusion-Purification with Advanced Diffusion
Models and Control of Randomness [22.87882885963586]
敵攻撃に対する防御はAIの安全性にとって重要である。
敵の浄化は、敵の攻撃を適切な前処理で防御するアプローチのファミリーである。
そこで我々は,新たな拡散浄化アルゴリズムであるPurify++を提案する。
論文 参考訳(メタデータ) (2023-10-28T17:18:38Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
ディープニューラルネットワークの敵対的脆弱性は、機械学習において大きな注目を集めている。
我々は、因果関係を敵対的脆弱性の軽減に組み込むことを提案する。
我々の手法は、敵の脆弱性を緩和するために因果性を利用する最初の試みと見なすことができる。
論文 参考訳(メタデータ) (2021-06-11T06:55:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。