Kerr-Enhanced Optical Spring
- URL: http://arxiv.org/abs/2310.18828v2
- Date: Thu, 4 Apr 2024 14:49:53 GMT
- Title: Kerr-Enhanced Optical Spring
- Authors: Sotatsu Otabe, Wataru Usukura, Kaido Suzuki, Kentaro Komori, Yuta Michimura, Ken-ichi Harada, Kentaro Somiya,
- Abstract summary: We propose and experimentally demonstrate the generation of enhanced optical springs using the optical Kerr effect.
To our knowledge, this is the first realization of optomechanical coupling enhancement using a nonlinear optical effect.
- Score: 0.11422130626858949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose and experimentally demonstrate the generation of enhanced optical springs using the optical Kerr effect. A nonlinear optical crystal is inserted into a Fabry-Perot cavity with a movable mirror, and a chain of second-order nonlinear optical effects in the phase-mismatched condition induces the Kerr effect. The optical spring constant is enhanced by a factor of $1.6\pm0.1$ over linear theory. To our knowledge, this is the first realization of optomechanical coupling enhancement using a nonlinear optical effect, which has been theoretically investigated to overcome the performance limitations of linear optomechanical systems. The tunable nonlinearity of demonstrated system has a wide range of potential applications, from observing gravitational waves emitted by binary neutron star post-merger remnants to cooling macroscopic oscillators to their quantum ground state.
Related papers
- Continuous-Wave Nonlinear Polarization Control and Signatures of Criticality in a Perovskite Cavity [0.0]
We demonstrate continuous-wave (CW) nonlinearities in a CsPbBr$_3$ perovskite cavity.
We exploit the interplay of nonlinearity and birefringence to demonstrate nonlinear control over the polarization light.
Our results position CsPbBr$_3$ as an exceptional platform for nonlinear optics, offering strong CW nonlinearity and birefringence.
arXiv Detail & Related papers (2024-07-08T12:05:09Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Irreversibility in an optical parametric driven optomechanical system [0.0]
We find a dramatic deviation in the irreversibility and quantum mutual information for small detuning.
Our analysis shows that the system irreversibility can be reduced by choosing the appropriate phase of the self-induced nonlinearity.
arXiv Detail & Related papers (2023-03-20T13:31:37Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Giant optomechanical spring effect in plasmonic nano- and picocavities
probed by surface-enhanced Raman scattering [8.713553888457293]
Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics.
We show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling.
arXiv Detail & Related papers (2022-04-20T17:35:26Z) - Tunable Nonlinearity and Efficient Harmonic Generation from a Strongly
Coupled Light-Matter System [0.0]
We investigate the origins of the experimentally observed enhancement of resonant SHG and THG under strong light-matter coupling.
We find that the enhancement of the nonlinear conversion efficiency has its origins in a modification of the associated nonlinear optical susceptibilities.
Our results pave the way for predicting and understanding quantum nonlinear optical phenomena in strongly coupled light-matter systems.
arXiv Detail & Related papers (2022-03-01T19:00:00Z) - In situ control of integrated Kerr nonlinearity [2.773426016230597]
Kerr nonlinearity in nanophotonic cavities provides a versatile platform to explore fundamental physical sciences.
We report the in situ control of integrated Kerr nonlinearity through its interplay with the cascaded Pockels nonlinear process.
arXiv Detail & Related papers (2021-11-30T21:48:20Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Enhanced generation of non-degenerate photon-pairs in nonlinear
metasurfaces [55.41644538483948]
Non-degenerate photon-pair generation can enable orders-of-surface enhancement of the photon rate and spectral brightness.
We show that the entanglement of the photon-pairs can be tuned by varying the pump polarization, which can underpin future advances and applications of ultra-compact quantum light sources.
arXiv Detail & Related papers (2021-04-15T08:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.