Stochastic modeling of superconducting qudits in the dispersive regime
- URL: http://arxiv.org/abs/2310.18856v2
- Date: Sat, 6 Jul 2024 02:11:10 GMT
- Title: Stochastic modeling of superconducting qudits in the dispersive regime
- Authors: Kangdi Yu, Murat C. Sarihan, Jin Ho Kang, Madeline Taylor, Cody S. Fan, Ananyo Banerjee, Jonathan L. DuBois, Yaniv J. Rosen, Chee Wei Wong,
- Abstract summary: This work focuses on modeling the dispersive quadrature measurement in an open quantum system.
We verify our model with a series of experimental results on a transmon-type qutrit.
- Score: 0.0773931605896092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of superconducting quantum computing, based on Josephson junctions, has recently seen remarkable strides in scaling the number of logical qubits. In particular, the fidelities of one- and two-qubit gates have reached the breakeven point with the novel error mitigation and correction methods. Parallel to these advances is the effort to expand the Hilbert space within a single junction or device by employing high-dimensional qubits, otherwise known as qudits. Research has demonstrated the possibility of driving higher-order transitions in a transmon or designing innovative multimode superconducting circuits, termed multimons. These advances can significantly expand the computational basis while simplifying the interconnects in a large-scale quantum processor. In this work we extend the measurement theory of a conventional superconducting qubit to that of a qudit, focusing on modeling the dispersive quadrature measurement in an open quantum system. Under the Markov assumption, the qudit Lindblad and stochastic master equations are formulated and analyzed; in addition, both the ensemble-averaged and the quantum-jump approach of decoherence analysis are detailed with analytical and numerical comparisons. We verify our stochastic model with a series of experimental results on a transmon-type qutrit, verifying the validity of our high-dimensional formalism.
Related papers
- Double-quantum-dot Andreev molecules: Phase diagrams and critical evaluation of effective models [0.0]
This work systematically investigates the phase diagram of a parallel double-quantum-dot Andreev molecule.
We map out the evolution of the ground state across a wide parameter space of level detunings, size of the superconducting gap, lead couplings, and inter-dot coupling strength.
arXiv Detail & Related papers (2024-07-29T14:27:42Z) - Predicting correlations in superradiant emission from a cascaded quantum system [0.0]
A novel type of cascaded quantum system has been realized using nanofiber-coupled cold atomic ensembles.
We develop a new simulation technique based on the truncated Wigner approximation for spins.
Our simulation tool can predict the second-order quantum coherence function, $g(2)$, along with other correlators of the light field emitted by a strongly excited cascaded system of two-level emitters.
arXiv Detail & Related papers (2024-07-02T10:51:40Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Stochastic Model of Qudit Measurement for Superconducting Quantum Information Processing [0.0]
This thesis focuses on modeling the dispersive measurement of a transmon qutrit in an open quantum system using quadrature detections.
Research has demonstrated the possibility of driving higher-order transitions in a transmon or designing innovative multimode superconducting circuits.
arXiv Detail & Related papers (2023-12-03T03:57:49Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Observation of critical phase transition in a generalized
Aubry-Andr\'e-Harper model on a superconducting quantum processor with
tunable couplers [22.968091212322523]
Quantum simulation enables study of many-body systems in non-equilibrium.
We simulate the one-dimensional generalized Aubry-Andr'e-Harper model for three different phases.
We observe the spin transport for initial single- and multi-excitation states in different phases.
arXiv Detail & Related papers (2022-06-27T08:22:19Z) - Circuit quantum electrodynamics (cQED) with modular quasi-lumped models [0.23624125155742057]
Method partitions a quantum device into compact lumped or quasi-distributed cells.
We experimentally validate the method on large-scale, state-of-the-art superconducting quantum processors.
arXiv Detail & Related papers (2021-03-18T16:03:37Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.