Testing platform-independent quantum error mitigation on noisy quantum
computers
- URL: http://arxiv.org/abs/2210.07194v2
- Date: Mon, 19 Dec 2022 21:38:32 GMT
- Title: Testing platform-independent quantum error mitigation on noisy quantum
computers
- Authors: Vincent Russo, Andrea Mari, Nathan Shammah, Ryan LaRose, William J.
Zeng
- Abstract summary: We apply quantum error mitigation techniques to a variety of benchmark problems and quantum computers.
We define an empirically motivated, resource-normalized metric of the improvement of error mitigation which we call the improvement factor.
- Score: 1.0499611180329804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply quantum error mitigation techniques to a variety of benchmark
problems and quantum computers to evaluate the performance of quantum error
mitigation in practice. To do so, we define an empirically motivated,
resource-normalized metric of the improvement of error mitigation which we call
the improvement factor, and calculate this metric for each experiment we
perform. The experiments we perform consist of zero-noise extrapolation and
probabilistic error cancellation applied to two benchmark problems run on IBM,
IonQ, and Rigetti quantum computers, as well as noisy quantum computer
simulators. Our results show that error mitigation is on average more
beneficial than no error mitigation - even when normalized by the additional
resources used - but also emphasize that the performance of quantum error
mitigation depends on the underlying computer.
Related papers
- A Machine Learning-Based Error Mitigation Approach For Reliable Software Development On IBM'S Quantum Computers [8.50998018964906]
Current quantum computers have inherent noise that results in errors in the outputs of quantum software executing on the quantum computers.
This paper proposes a practical machine learning approach, called Q-LEAR, to mitigate noise errors in quantum software outputs.
Results show that, compared to the baseline, Q-LEAR achieved a 25% average improvement in error mitigation on both real quantum computers and simulators.
arXiv Detail & Related papers (2024-04-19T13:51:40Z) - Machine Learning for Practical Quantum Error Mitigation [0.0]
We show that machine learning for quantum error mitigation drastically reduces the cost of mitigation.
We propose a path toward scalable mitigation by using ML-QEM to mimic traditional mitigation methods with superior runtime efficiency.
arXiv Detail & Related papers (2023-09-29T16:17:12Z) - Non-Markovian noise sources for quantum error mitigation [0.0]
We present a non-Markovian model of quantum state evolution and a quantum error mitigation cost function tailored for NISQ devices.
Our findings reveal that the cost function for quantum error mitigation increases as the coupling strength between the quantum system and its environment intensifies.
arXiv Detail & Related papers (2023-02-10T05:10:27Z) - Hypothesis Testing for Error Mitigation: How to Evaluate Error
Mitigation [0.9405458160620533]
We introduce hypothesis testing within the framework of quantum error mitigation.
We propose an inclusive figure of merit that accounts for both resource requirement and mitigation efficiency.
We experimentally evaluate $16$ error mitigation pipelines composed of singular methods.
arXiv Detail & Related papers (2023-01-06T19:16:08Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Multi-exponential Error Extrapolation and Combining Error Mitigation
Techniques for NISQ Applications [0.0]
Noise in quantum hardware remains the biggest roadblock for the implementation of quantum computers.
Error extrapolation is an error mitigation technique that has been successfully implemented experimentally.
We extend this to multi-exponential error extrapolation and provide more rigorous proof for its effectiveness under Pauli noise.
arXiv Detail & Related papers (2020-07-02T17:18:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.