Social Interaction-Aware Dynamical Models and Decision Making for
Autonomous Vehicles
- URL: http://arxiv.org/abs/2310.18891v2
- Date: Tue, 31 Oct 2023 03:57:56 GMT
- Title: Social Interaction-Aware Dynamical Models and Decision Making for
Autonomous Vehicles
- Authors: Luca Crosato, Kai Tian, Hubert P. H Shum, Edmond S. L. Ho, Yafei Wang,
Chongfeng Wei
- Abstract summary: Interaction-aware Autonomous Driving (IAAD) is a rapidly growing field of research.
It focuses on the development of autonomous vehicles that are capable of interacting safely and efficiently with human road users.
This is a challenging task, as it requires the autonomous vehicle to be able to understand and predict the behaviour of human road users.
- Score: 20.123965317836106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interaction-aware Autonomous Driving (IAAD) is a rapidly growing field of
research that focuses on the development of autonomous vehicles (AVs) that are
capable of interacting safely and efficiently with human road users. This is a
challenging task, as it requires the autonomous vehicle to be able to
understand and predict the behaviour of human road users. In this literature
review, the current state of IAAD research is surveyed in this work. Commencing
with an examination of terminology, attention is drawn to challenges and
existing models employed for modelling the behaviour of drivers and
pedestrians. Next, a comprehensive review is conducted on various techniques
proposed for interaction modelling, encompassing cognitive methods, machine
learning approaches, and game-theoretic methods. The conclusion is reached
through a discussion of potential advantages and risks associated with IAAD,
along with the illumination of pivotal research inquiries necessitating future
exploration.
Related papers
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Generative Models and Connected and Automated Vehicles: A Survey in Exploring the Intersection of Transportation and AI [0.0]
This report investigates the history and impact of Generative Models and Connected and Automated Vehicles (CAVs)
By focusing on the application of generative models within the context of CAVs, the study aims to unravel how this integration could enhance predictive modeling, simulation accuracy, and decision-making processes in autonomous vehicles.
arXiv Detail & Related papers (2024-03-14T06:51:26Z) - World Models for Autonomous Driving: An Initial Survey [16.448614804069674]
The capability to accurately predict future events and assess their implications is paramount for both safety and efficiency.
World models have emerged as a transformative approach, enabling autonomous driving systems to synthesize and interpret vast amounts of sensor data.
This paper provides an initial review of the current state and prospective advancements of world models in autonomous driving.
arXiv Detail & Related papers (2024-03-05T03:23:55Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Analyze Drivers' Intervention Behavior During Autonomous Driving -- A
VR-incorporated Approach [2.7532019227694344]
This work sheds light on understanding human drivers' intervention behavior involved in the operation of autonomous vehicles.
Experiment environments were implemented where the virtual reality (VR) and traffic micro-simulation are integrated.
Performance indicators such as the probability of intervention, accident rates are defined and used to quantify and compare the risk levels.
arXiv Detail & Related papers (2023-12-04T06:36:57Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Drivers' Manoeuvre Modelling and Prediction for Safe HRI [0.0]
Theory of Mind has been broadly explored for robotics and recently for autonomous and semi-autonomous vehicles.
We explored how to predict human intentions before an action is performed by combining data from human-motion, vehicle-state and human inputs.
arXiv Detail & Related papers (2021-06-03T10:07:55Z) - A Survey on Autonomous Vehicle Control in the Era of Mixed-Autonomy:
From Physics-Based to AI-Guided Driving Policy Learning [7.881140597011731]
This paper serves as an introduction and overview of the potentially useful models and methodologies from artificial intelligence (AI) into the field of transportation engineering for autonomous vehicle (AV) control.
We will discuss state-of-the-art applications of AI-guided methods, identify opportunities and obstacles, raise open questions, and help suggest the building blocks and areas where AI could play a role in mixed autonomy.
arXiv Detail & Related papers (2020-07-10T04:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.