World Models for Autonomous Driving: An Initial Survey
- URL: http://arxiv.org/abs/2403.02622v3
- Date: Tue, 7 May 2024 13:28:48 GMT
- Title: World Models for Autonomous Driving: An Initial Survey
- Authors: Yanchen Guan, Haicheng Liao, Zhenning Li, Jia Hu, Runze Yuan, Yunjian Li, Guohui Zhang, Chengzhong Xu,
- Abstract summary: The capability to accurately predict future events and assess their implications is paramount for both safety and efficiency.
World models have emerged as a transformative approach, enabling autonomous driving systems to synthesize and interpret vast amounts of sensor data.
This paper provides an initial review of the current state and prospective advancements of world models in autonomous driving.
- Score: 16.448614804069674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving landscape of autonomous driving, the capability to accurately predict future events and assess their implications is paramount for both safety and efficiency, critically aiding the decision-making process. World models have emerged as a transformative approach, enabling autonomous driving systems to synthesize and interpret vast amounts of sensor data, thereby predicting potential future scenarios and compensating for information gaps. This paper provides an initial review of the current state and prospective advancements of world models in autonomous driving, spanning their theoretical underpinnings, practical applications, and the ongoing research efforts aimed at overcoming existing limitations. Highlighting the significant role of world models in advancing autonomous driving technologies, this survey aspires to serve as a foundational reference for the research community, facilitating swift access to and comprehension of this burgeoning field, and inspiring continued innovation and exploration.
Related papers
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI)
In this survey, we embark on a comprehensive exploration of the latest advancements in world models.
We examine challenges and limitations of world models, and discuss their potential future directions.
arXiv Detail & Related papers (2024-05-06T14:37:07Z) - Towards Knowledge-driven Autonomous Driving [37.003908817857095]
This paper explores the emerging knowledge-driven autonomous driving technologies.
Our investigation highlights the limitations of current autonomous driving systems.
Knowledge-driven methods with the abilities of cognition, generalization and life-long learning emerge as a promising way to overcome these challenges.
arXiv Detail & Related papers (2023-12-07T14:17:17Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
This review systematically assesses over seventy open-source autonomous driving datasets.
It offers insights into various aspects, such as the principles underlying the creation of high-quality datasets.
It also delves into the scientific and technical challenges that warrant resolution.
arXiv Detail & Related papers (2023-12-06T10:46:53Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WM is the first driving world model compatible with existing end-to-end planning models.
Our model generates high-fidelity multiview videos in driving scenes.
arXiv Detail & Related papers (2023-11-29T18:59:47Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Social Interaction-Aware Dynamical Models and Decision Making for
Autonomous Vehicles [20.123965317836106]
Interaction-aware Autonomous Driving (IAAD) is a rapidly growing field of research.
It focuses on the development of autonomous vehicles that are capable of interacting safely and efficiently with human road users.
This is a challenging task, as it requires the autonomous vehicle to be able to understand and predict the behaviour of human road users.
arXiv Detail & Related papers (2023-10-29T03:43:50Z) - Exploring the Potential of World Models for Anomaly Detection in
Autonomous Driving [11.091582432763738]
We show how world models can be leveraged to perform anomaly detection in the domain of autonomous driving.
We provide a characterization of world models and relate individual components to previous works in anomaly detection.
arXiv Detail & Related papers (2023-08-10T17:04:51Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
We provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving.
We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others.
We discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework.
arXiv Detail & Related papers (2023-06-29T14:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.