Sentence Bag Graph Formulation for Biomedical Distant Supervision
Relation Extraction
- URL: http://arxiv.org/abs/2310.18912v1
- Date: Sun, 29 Oct 2023 05:48:04 GMT
- Title: Sentence Bag Graph Formulation for Biomedical Distant Supervision
Relation Extraction
- Authors: Hao Zhang, Yang Liu, Xiaoyan Liu, Tianming Liang, Gaurav Sharma, Liang
Xue, and Maozu Guo
- Abstract summary: We propose a graph view of sentence bags referring to an entity pair, which enables message-passing based aggregation of information related to the entity pair over the sentence bag.
The proposed framework alleviates the common problem of noisy labeling in distantly supervised relation extraction and also effectively incorporates inter-dependencies between sentences within a bag.
- Score: 13.173870222632454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel graph-based framework for alleviating key challenges in
distantly-supervised relation extraction and demonstrate its effectiveness in
the challenging and important domain of biomedical data. Specifically, we
propose a graph view of sentence bags referring to an entity pair, which
enables message-passing based aggregation of information related to the entity
pair over the sentence bag. The proposed framework alleviates the common
problem of noisy labeling in distantly supervised relation extraction and also
effectively incorporates inter-dependencies between sentences within a bag.
Extensive experiments on two large-scale biomedical relation datasets and the
widely utilized NYT dataset demonstrate that our proposed framework
significantly outperforms the state-of-the-art methods for biomedical distant
supervision relation extraction while also providing excellent performance for
relation extraction in the general text mining domain.
Related papers
- Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - Graph Relation Distillation for Efficient Biomedical Instance
Segmentation [80.51124447333493]
We propose a graph relation distillation approach for efficient biomedical instance segmentation.
We introduce two graph distillation schemes deployed at both the intra-image level and the inter-image level.
Experimental results on a number of biomedical datasets validate the effectiveness of our approach.
arXiv Detail & Related papers (2024-01-12T04:41:23Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
This research proposes to retrieve textual and visual evidence based on the object, sentence, and whole image.
We develop a novel approach to synthesize the object-level, image-level, and sentence-level information for better reasoning between the same and different modalities.
arXiv Detail & Related papers (2023-05-25T15:26:13Z) - Integrating Heterogeneous Domain Information into Relation Extraction: A
Case Study on Drug-Drug Interaction Extraction [1.0152838128195465]
This thesis works on Drug-Drug Interactions (DDIs) from the literature as a case study.
A deep neural relation extraction model is prepared and its attention mechanism is analyzed.
In order to further exploit the heterogeneous information, drug-related items, such as protein entries, medical terms and pathways are collected.
arXiv Detail & Related papers (2022-12-21T01:26:07Z) - Supporting Medical Relation Extraction via Causality-Pruned Semantic
Dependency Forest [8.73855139557187]
We propose a method to model semantic and syntactic information from medical texts based on causal explanation theory.
We generate dependency forests consisting of the semantic-embedded 1-best dependency tree.
A task-specific causal explainer is adopted to prune the dependency forests, which are then fed into a designed graph convolutional network to learn the corresponding representation.
arXiv Detail & Related papers (2022-08-29T10:17:47Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Modular Self-Supervision for Document-Level Relation Extraction [17.039775384229355]
We propose decomposing document-level relation extraction into relation detection and argument resolution.
We conduct a thorough evaluation in biomedical machine reading for precision oncology, where cross-paragraph relation mentions are prevalent.
Our method outperforms prior state of the art, such as multi-scale learning and graph neural networks, by over 20 absolute F1 points.
arXiv Detail & Related papers (2021-09-11T20:09:18Z) - Relation Clustering in Narrative Knowledge Graphs [71.98234178455398]
relational sentences in the original text are embedded (with SBERT) and clustered in order to merge together semantically similar relations.
Preliminary tests show that such clustering might successfully detect similar relations, and provide a valuable preprocessing for semi-supervised approaches.
arXiv Detail & Related papers (2020-11-27T10:43:04Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z) - A Data-driven Approach for Noise Reduction in Distantly Supervised
Biomedical Relation Extraction [2.771933807499954]
We extend an entity-enriched relation classification BERT model to the problem of multiple instance learning.
We define a simple data encoding scheme that significantly reduces noise.
Our approach further encodes knowledge about the direction of relation triples, allowing for increased focus on relation learning.
arXiv Detail & Related papers (2020-05-26T08:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.