Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks
- URL: http://arxiv.org/abs/2310.18924v2
- Date: Thu, 6 Jun 2024 12:20:48 GMT
- Title: Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks
- Authors: Sungho Suh, Dhruv Aditya Mittal, Hymalai Bello, Bo Zhou, Mayank Shekhar Jha, Paul Lukowicz,
- Abstract summary: Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage.
The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation.
This paper proposes a two-stage RUL prediction scheme for Lithium-ion batteries using a-temporal attention network (ST-MAN)
- Score: 4.249657064343807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage. The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation, as well as reducing maintenance costs. However, determining the life cycle of batteries in real-world scenarios is challenging, and existing methods have limitations in predicting the number of cycles iteratively. In addition, existing works often oversimplify the datasets, neglecting important features of the batteries such as temperature, internal resistance, and material type. To address these limitations, this paper proposes a two-stage RUL prediction scheme for Lithium-ion batteries using a spatio-temporal multimodal attention network (ST-MAN). The proposed ST-MAN is to capture the complex spatio-temporal dependencies in the battery data, including the features that are often neglected in existing works. Despite operating without prior knowledge of end-of-life (EOL) events, our method consistently achieves lower error rates, boasting mean absolute error (MAE) and mean square error (MSE) of 0.0275 and 0.0014, respectively, compared to existing convolutional neural networks (CNN) and long short-term memory (LSTM)-based methods. The proposed method has the potential to improve the reliability and efficiency of battery operations and is applicable in various industries.
Related papers
- Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
We present the Battery GraphNets framework that jointly learns to incorporate a discrete dependency graph structure between battery parameters.
The proposed method outperforms several popular methods by a significant margin on publicly available battery datasets and achieves SOTA performance.
arXiv Detail & Related papers (2024-08-14T15:44:56Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
Batteries are an essential component in a deeply decarbonized future. Understanding battery performance and "useful life" as a function of design and use is of paramount importance.
We present a first step in that direction via deep transformer networks for the prediction of 28 battery state of health descriptors.
arXiv Detail & Related papers (2023-09-18T15:04:40Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) and Remaining Useful Life (RUL) contribute to enhancing predictive maintenance, reliability, and longevity of battery systems.
This paper presents a mapping study of the state-of-the-art in machine learning methods for estimating the SoH and RUL of lead-acid batteries.
arXiv Detail & Related papers (2023-07-11T10:41:41Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
We present a review of the existing approaches for estimating the remaining useful life of lithium-ion batteries.
We propose a novel approach based on machine learning techniques for accurately predicting the remaining useful life of lithium-ion batteries.
arXiv Detail & Related papers (2023-05-17T15:35:31Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices.
To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies.
This can hamper dramatically subsequent decision-making, such as forecasting.
arXiv Detail & Related papers (2022-06-15T19:46:59Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
We propose a novel method of time-series battery data augmentation using deep neural networks.
One model produces battery charging profiles, and another produces battery discharging profiles.
Results show the efficacy of this approach to solve the challenges of limited battery data.
arXiv Detail & Related papers (2021-10-05T16:17:19Z) - Working Memory Connections for LSTM [51.742526187978726]
We show that Working Memory Connections constantly improve the performance of LSTMs on a variety of tasks.
Numerical results suggest that the cell state contains useful information that is worth including in the gate structure.
arXiv Detail & Related papers (2021-08-31T18:01:30Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
We propose a general novel multi-armed bandit (MAB) algorithm to reduce disconnectivity time, handover rate, and energy consumption of UAV.
We show how each of these performance indicators (PIs) is improved by adopting a proper range of corresponding learning parameter.
arXiv Detail & Related papers (2020-09-21T12:35:23Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.